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SUMMARY 

Techniques have been developed a t  t h e  J u l i u s  K r u t t s c h n i t t  Mineral 
Research Centre  which r e l a t e  energy t o  corresponding breakage i n  
l a b o r a t o r y  s c a l e  t e s t s .  These r e l a t i o n s h i p s  can be a p p l i e d  t o  
autogenous m i l l  modalling. . 
For each o r e  type, s p e c i f i c  breakage d i s t r i b u t i o n s  a r e  measured f o r  
both high energy (impact o r  crushing)  and low energy (abrasion)  
breakage. Energy l e v e l s  i n  t h e  m i l l  a r e  estimated, f o r  each p a r t i c l e  
s i z e  range, from t h e  m i l l  load (detennined recursively)  and m i l l  s ize .  
Combining these  gives breakage (appearance) d i s t r i b u t i o n  functions f o r  
t h e  mi l l .  Transport through t h e  m i l l  is determined by t h e  g r a t e  s i z e  
and pebble p o r t  s i z e  modelled a s  a c l a s s i f i c a t i o n  funct ion.  An 
empir ical  mass t r a n s f e r  function is  used t o  r e l a t e  t h e  holdup of f i n e  
mater ial  i n  t h e  m i l l  t o  t h e  m i l l  feed r a t e .  The per fec t  mixing matrix 
conuninution model is used t o  ca lcu la te  m i l l  d ischarge and contents. 
For semi-autogenous g r i n d i n g  t h e  b a l l  l o a d  is  converted t o  an 
equiva len t  a d d i t i o n a l  o r e  load t o  al low t h e  energy l e v e l s  t o  be 
calculated.  

A s  t h e  JKMRC SAG/Auto m i l l  data  base expands, var ious  mass t r a n s f e r  
re la t ionsh ips  have been t e s t e d  against  r e a l  data .  This paper presents  
a t r a n s f e r  function based on a wide range of data .  The e f f e c t  of b a l l  
load has been inves t iga ted  f o r  a range of o r e  types.  These d a t a  
suggest  a systematic  r e l a t i o n s h i p  between b a l l  load  and gr ind ing  
ra tes .  This re la t ionsh ip  is presented and discussed. 



INTRODUCTION 

The JKMRC has been concerned with modelling of autogenous and semi- 
autogenous mills since the early 1970s (.Stanley, Gault, Duckworth). A 
large number of these mills have been investigated. The key problem 
which arose was to separate the breakage process from the others 
occurring within the mill and to quantify this process in terms of the 
grinding media, that is, the mill load. This paper outlines the 
modelling approach developed by Leung (1987) and subsequent 
.developments concerning the effects of ball load and the factors 
governing the flow of material through the mill. 

INPUT ENERGY - BREAKAGE MODELLING 

Early researchers into grinding were concerned with the energy 
consumed by specific process units for size reduction of various ore 
types. Since the late 1970s the JKMRC has been investigating single 
particle breakage under closely controlled conditions to separate 
process unit effects (i.e. type of mill) from the specific breakage 
behaviour of a particular ore. 

The early definitions of breakage functions arose from the work of 
Broadbent and Calcott (Lynch, 1977, Chapter 2) - dropping lumps of 
coal onto hard surfaces. 

It is difficult to achieve industrial energy levels by dropping lumps 
of ore. Achieving even one kilowatt hour per ton of energy input 
requires a vertical drop of more than 300m. A more realistic (and 
less hazardous) experimental technique is to hit small rocks with 
larger ones (Figure 1). Assuming the small particle absorbs all the 
energy, then a drop of 3 6 0 m  by a 1 0 0 m  diameter particle onto a 1 0 m  
diameter particle achieves the same energy input. If the ore has a 
specific gravity of around 2.67, then a 70mm diameter steel ball 
achieves the same energy input. 

Figure 1 - Various methods of achieving an input energy of lkWh/tonne 



PENDULUM TEST WORK 

R e s e a r c h e r s  (Narayanan and  Whi ten ,  1983)  a t  t h e  JKMRC have 
i n v e s t i g a t e d  b reakage  u s i n g  a  mod i f i ed  b a l l i s t i c  pendulum. The 
rebound pendulum is  ins t rumented,  a s  shown i n  F igu re  2 ,  t o  a l low t h e  
absorbed energy t o  be  moni tored  from t h e  ampl i tude  of t h e  pendulum. 
A computer is  used t o  measure t h e  t ime  between f i n s  i n t e r r u p t i n g  a  
t r a n s v e r s e  l a s e r  beam. The i n p u t  pendulum can be  r e l e a s e d  from 
c o n t r o l l e d  h e i g h t s  f o r  p r e c i s e  c o n t r o l  of i n p u t  ene rgy .  25-100 
p a r t i c l e s  a r e  broken one a t  a  t ime  i n  s e v e r a l  c l o s e l y  c o n t r o l l e d  s i z e  
and inpu t  energy ranges .  It t u r n s  ou t  t h a t  t h e  degree  of breakage can 
be  u s e f u l l y  d e s c r i b e d  by t h e  percentage  of t h e  o r i g i n a l  p a r t i c l e  which 
pas ses  through an a p e r t u r e  of one t e n t h  of t h e  o r i g i n a l  p a r t i c l e  s i z e .  

F igure  2 - Twin pendulum dev ice  

Th i s  pe rcen tage  is  c a l l e d  t h e  t l o  and was found t o  be  simply r e l a t e d  
t o  t h e  s p e c i f i c  c rush ing  energy i n  t h e  fo l lowing way: 

where 
a , b  - c o n s t a n t s  
E,, - s p e c i f i c  c rush ing  energy 

I t  has  a l s o  been found t h a t  t h e  r e l a t i o n s h i p  between t h e  t l o  and o t h e r  
p o i n t s  on t h e  s i z e  d i s t r i b u t i o n  depends on ly  on t h e  va lue  of t l o  f o r  a  
wide range of o r e  t ypes .  Graphica l ly ,  t h i s  is  shown i n  F igu res  3 and 
4 .  



Y = test partlcle slze 

Figure 3 - tlo curve-typical pendulum test product size distribution 

Figure 4 - Relationship to other tl0 curves (after Leung, 1987) 

The relationships depicted in Figure 4 can also be described 
mathematically in the following manner (Leung 1987): 

where 
A - 1 + 0.0898 ln(10x)-0.429 (x-0.1) 
g - 0.88 l n ( l O ~ ) e ~ . ~ ' ~ ~  - 1n (-ln(1-t)) 

and 
P - cumulative fraction passing 
x - normalised size 
t - cumulative fraction passing x - 

0.1 (tl0) 



Hence i f  an energy leve l  f o r  a  par t i cu la r  p a r t i c l e  s i z e  i s  known a 
t l o  can be calculated t o  reconstruct t h e  complete s i z e  d i s t r i b u t i o n  o r  
appearance function. 

AUTOGENOUS MILL BREAlCAGE 

To provide an i n i t i a l  energy l e v e l ,  Leung (1987) assumed t h a t  t h e  
energy l e v e l s  f o r  t h e  coarsest  s i z e  f r a c t i o n s  of t h e  m i l l  load could 
be sca led  aga ins t  t h e  m i l l  diameter, t h a t  is, t h e  maximum p a r t i c l e  
l i f t  should be proportional t o  m i l l  diameter. 

El = p g * mill diameter (3) 

For t h e  smaller  s i z e s  Leung followed a f u n c t i o n a l  form proposed by 
Austin et a l .  (1984). 

This  assumes t h a t  each s i z e  f r a c t i o n  w i t h i n  a  m i l l  l o a d  w i l l  
experience a  d i f fe ren t  input energy l e v e l  and w i l l ,  therefore,  produce 
a  d i f f e r e n t  breakage function. 

BREAKAGE BY ABRASION 

Each of t h e  e a r l i e r  researchers  had i d e n t i f i e d  a proport ion of f i n e  
p a r t i c l e s  which were produced by chipping of f  t h e  sharp edges. Leung 
(1987) generated abrasion o r  low energy appearance func t ions  from 
tumbling t e s t s  i n  t h e  laboratory under a  s tandard s e t  of condit ions.  
Using an approach s imi la r  t o  t h a t  of Narayanan and Whiten (1983) i n  
t h e i r  work on impact breakage he developed an o r e  s p e c i f i c  t parameter 
f o r  abrasion. This i s  used t o  generate an appearance funct ion which 
is combined with t h a t  f o r  impact t o  produce a  combined appearance 
function a s  shown below. Figure 5 shows t y p i c a l  combined appearance 
functions f o r  a  range of s i z e s .  

where 
a  - combined appearance funct ion 
~ L E  = t parameter f o r  abrasion 
t ~ e  - t parameter f o r  impact breakage 
ale = abrasion appearance funct ion 
aHe - crushing appearance funct ion 
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Figure 5 - Typical Combined Appearance Functions for Selected Particle Sizes 

MODEC STRUCTURE 

The per fec t  mixing m i l l  model (Whiten, 1974) a t  s teady s t a t e  provides 
t h e  s t r u c t u r e  t o  combine t h e  ore  s p e c i f i c  breakage funct ion with t h e  
o ther  components of t h e  model shown i n  F igure  6. The model is  
arranged t o  p red ic t  m i l l  load a s  well a s  m i l l  product. It r e l a t e s  the  
d i f f e r e n t  p a r t s  i n  t h e  following manner. 

where f i ,  si, ri, d i  and p i  a r e  feed r a t e ,  contents, breakage rates ,  
discharge r a t e s  and product r a t e  vec tors  and a i j  i s  t h e  combined 
appearance o r  breakage d i s t r i b u t i o n  func t ion .  The s i z e  f r a c t i o n  
indices  ( i o r  j) count from t h e  coarses t  screen s i z e  t o  t h e  f i n e s t .  
The form of equations (6) and (7)  allows both t h e  m i l l  load and t h e  
product t o  be ca lcu la ted  from a m i l l  feed and a s e t  of breakage and 
discharge r a t e s .  
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Figure  6  - Autogenous m i l l  model s t r u c t u r e  

BREAlCAGE RATES 

The Leung (1987) approach was t o  p r o p o s e  t h a t  f o r  any l o a d  
environment, t h e  g r ind ing  r a t e s  w i l l  be cons tan t  - a t  l e a s t  t o  a  f i r s t  
approximation. C l e a r l y  where b a l l s  a r e  a  s i g n i f i c a n t  p ropor t ion  of 
t h e  load,  t h e y  w i l l  not  break o r  abrade and t h e  g r i n d i n g  r a t e s  must 
change. Leung approximated t h e  e n e r g y  i n p u t  o f  t h e  b a l l s  by 
conver t ing them t o  an equ iva len t  load of t h e  same s p e c i f i c  g r a v i t y  a s  
t h e  o r e  i t s e l f .  A s t e e l  b a l l  i s  assumed t o  provide  equ iva len t  energy 
inpu t  t o  an  o r e  p a r t i c l e  of t h e  same mass. 

Most of t h e  da ta  a v a i l a b l e  t o  Leung was e i t h e r  autogeneous o r  c l o s e  t o  
a  6% b a l l  charge .  Hence a  s e t  of average r a t e s  cou ld  be de r ived  f o r  
each of t h e s e  cond i t ions .  As shown i n  equa t ion  6, t h e  model u t i l i s e s  
a  g r i n d i n g  r a t e  ri f o r  each s i z e  f r a c t i o n .  As t h e r e  may be  up t o  
t h i r t y  square  r o o t  of  two s i z e  f r a c t i o n s  i n  a  m i l l  feed,  t h e s e  r a t e s  
a r e  compacted i n t o  a  s p l i n e  func t ion  (Ahlberg.1967) wi th  f i v e  knots .  
A s p l i n e  func t ion  is  a  smooth curve with a  cont inuous  f i r s t  d e r i v a t i v e  
and a  second d e r i v a t i v e  which may change a t  each knot .  The curve is  
equ iva len t  t o  a  draf tsman 's  s p l i n e  - a  s t r i p  o f  s t e e l  a d j u s t a b l e  by 
moveable screws.  The screw p o s i t i o n s  a r e  ana lagous  t o  t h e  knot 
p o s i t i o n s .  With t h e  expanding use of JKSimMet and con t inu ing  research 
(Morrell  1989),  a  much broader range of d a t a  is becoming a v a i l a b l e .  

These d a t a  i n c l u d e  s e v e r a l  1 . B m  x  0.6m m i l l  p i l o t  t e s t s  w i th  2 %  
increments i n  b a l l  charge.  



These data are not available for general publication, however the 
grinding rates at each spline knot are shown in Figures 7, 8 and 9 for 
three ores of varying hardness. 

The rates reported also cover a range of circuit configurations from 
open circuit to closed with one or two stages of classification. 

While some variation in the rates is apparent for different ore types, 
in each case, the vqriation with ball charge is quite systematic. 

Some of these data also include large variations in the ball size 
distribution. 
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Figure 7 - Grinding Rates at Each Spline Knot for a Soft Ore 

Figure 8 - Grinding Rates at Each Spline Knot for a Medium Ore 
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Figure 9 - Grinding Rates a t  Each Spline Knot f o r  a Hard Ore 

MASS TRANSFER 

To c a l c u l a t e  t h e  m i l l  l oad  we require  knowledge of how much minus 
g r a t e  s i z e  mate r ia l  w i l l  remain i n  t h e  m i l l  with d i f f e r e n t  operat ing 
conditions. In  t h e  absence of a more r e a l i s t i c  re la t ionsh ip  a t  t h a t  
time, Leung (1987) adopted t h e  simple model proposed by Austin e t  a 1  
(1976). This took t h e  following form: 

where 
ml,m2 - constants 

L - f rac t ion  of t h e  m i l l  voltnm occupied by 
below g r a t e  s i z e  o r e  and water 

F - volumetric discharge r a t e  expressed a s  
equivalent m i l l s  f u l l  pe r  minute 

Using h i s  own exparimantal r e s u l t s  from tests conducted with a 1.73; 
diameter m i l l  and augmented by t h e  r e s u l t s  of  Stanley 's  work on t h e  
Warrego m i l l  (1974) Leung estimated t h e  values of m l  and q t o  he both 
equal t o  0 . 3 7 .  

Since then Rogers and Austin (1984) and Moys (1985) have proposed more 
comprehensive r e l a t i o n s h i p s  which incorpora te  a range of m i l l  and 
s l u r r y  var iab les .  One of t h e  major problems with these,  o r  any ,o ther  
re la t ionsh ips  r e l a t i n g  t o  SAG/!?AG mills, has been i n  obtaining data  t o  
ver i fy  and r e f i n e  them. 



JKMRC SAG MILL DATA BASE 

A s  noted e a r l i e r ,  t h e  JKMRC SAG/FAG m i l l  d a t a  base has been 
considerably expanded through the  contr ibut ion of d e t a i l e d  p i l o t  m i l l  
r e s u l t s  from s e v e r a l  sources and data  from t h e  Alcoa of Austral ia  
P in ja r ra  SAG m i l l s .  The d a t a  from Alcoa were obtained during a two 
year SAG m i l l  study sponsored by Alcoa and undertaken by t h e  JKMRC. 
A s  pa r t  of t h e  p ro jec t  an e n t i r e  equilibrium charge from one of t h e i r  
7.3m diameter m i l l s  was dropped, weighed and s ized .  It is  believed 
t h a t  t h i s  i s  only t h e  second time t h a t  t h i s  has been done i n  
Austral ia ,  t h e  f i r s t  being Stanley 's  ana lys i s  of t h e  Warrego m i l l  
charge ( 1 9 7 4 ) .  

The JKMRC SAG m i l l  da ta  base now includes r e s u l t s  from 4 3  t e s t s  f o r  
which f u l l  c i r c u i t  surveys and m i l l  charge s i z e  d i s t r i b u t i o n s  a r e  
ava i lab le .  Of these,  two a r e  from i n d u s t r i a l  s c a l e  m i l l s  with the  
remainder being from p i l o t  sca le  m i l l s  with diameters of t h e  order of 
1.8m. This has now put us i n  a posi t ion t o  draw t e n t a t i v e  conclusions 
about t h e  e f f e c t s  not only of operat ing condit ions but m i l l  design 
fac tors  a s  well.  

FACTORS AFFECTING THE MASS TRANSFER RATE 

A list of p o t e n t i a l l y  s i g n i f i c a n t  v a r i a b l e s  can be drawn up a s  
f allows : 

M i l l  var iables:  diameter 
length 
gra te  open area 
gra te  design 
speed 
shape 

Ore/charge variables:  charge porosi ty  
pulp leve l  
pulp s.g. 
pulp v i scos i ty  
charge flow c h a r a c t e r i s t i c  

With t h e  e x c e p t i o n  of  m i l l  shape and t h e  o r e  charge  flow 
c h a r a c t e r i s t i c  t h e  above var iab les  a r e  s e l f  explanatory. M i l l  shape 
and g r a t e  design have been included f o r  t h e  sake of completeness 
though they have not been included i n  t h i s  analysis .  The former is  a 
term which covers such design features  a s  l i n e r  p r o f i l e  and t h e  degree 
t o  which t h e  m i l l  ends a r e  con ica l  i n  shape. The g r a t e  design term 
r e l a t e s  t o  t h e  hole  posi t ioning and whether round, square o r  s l o t t e d  
apertures  a r e  used. The flow c h a r a c t e r i s t i c  w i l l  be considered l a t e r  
and describes how well a charge flows. 

FORMULATION OF AN EMPIRICAL MASS TRANSFER RELATIONSHIP 

Using t h e  JKMRC d a t a  base, mul t ip le  regress ion  techniques were 
appl ied t o  d e r i v e  an empi r ica l  r e l a t i o n s h i p  between t h e  volumetric 
discharge r a t e  and opera t ing  and design var iab les .  The following 
equation was obtained: 



where Kt a ,  b, c ,  d, e ,  f 

4k 
E 
h 
LP 

cons tan t s  
f r a c t i o n a l  c r i t i c a l  speed 
p o r o s i t y  f a c t o r  
1.0 - r ecyc le  f r a c t i o n  
f r a c t i o n a l  m i l l  pulp  
f i l l i n g  
open a r e a  of  g r a t e  (m2) 
m i l l  d iameter  (m) 
volumetr ic  d i scha rge  r a t e  
(m3/min) 

Values f o r  t h e  c o n s t a n t s  were a s  follows: 

Only c o e f f i c i e n t s  which w e r e  s i g n i f i c a n t  a t  t h e  9 5 2  l e v e l  were 
included.  The R~ v a l u e  was 0.977 which is s i g n i f i c a n t  a t  t h e  99.99% 
l e v e l .  F igu re  10 shows a  p l o t  of  t h e  observed d i s c h a r g e  r a t e s  and 
those  p red ic t ed  by equa t ion  9. 

Figure 10 - Observed vs Fitted Log M i l l  Discharge Rate (cu.m./mln) 

The i n c l u s i o n  of  t h e  one minus r ecyc le  f r a c t i o n  term is  p a r t i c u l a r l y  
i n t e r e s t i n g .  The r e c y c l e  f r a c t i o n  is  de f ined  a s  t h e  f r a c t i o n  of  t o t a l  



f eed  t o  t h e  m i l l  which has  been recycled by t h e  c i r c u i t  c l a s s i f i e r .  
I n  t h e  case  of open c i r c u i t  ope ra t ion  t h e  r e c y c l e  f r a c t i o n  is  zero  and 
t h e  term has  a  v a l u e  o f  u n i t y .  It is sugges ted  t h a t  t h e  r e c y c l e  
f r a c t i o n  r e f l e c t s  t h e  f low c h a r a c t e r i s t i c  of t h e  m i l l  f eed  and hence 
m i l l  charge .  By d e f i n i t i o n  recycled m a t e r i a l  is a b l e  t o  flow through 
t h e  m i l l  and t h e r e f o r e  it i s  no t  unreasonable  t o  expec t  t h a t  t h e  
h ighe r  i s  i ts p r o p o r t i o n  i n  t h e  m i l l  f e e d  t h e  h i g h e r  w i l l  be  t h e  
d i scha rge  r a t e .  The a b i l i t y  of t h e  recycled m a t e r i a l  t o  flow through 
t h e  m i l l  w i l l  obviously  be r e l a t e d  t o  i t s  s i z e  though t h e  shape a l s o  
is l i k e l y  t o  p l a y  an important r o l e  a s  i t  w i l l  be t y p i c a l l y  be  smooth 
and w e l l  rounded. 

The p o r o s i t y  f a c t o r  i n d i c a t e s  t h e  a b i l i t y  of  a  c o a r s e r  charge t o  allow 
pulp  t o  f low through it more e a s i l y .  It is  n o t  a  t r u e  p o r o s i t y  but  an 
ind ica t ion  of it us ing  t h e  following d e f i n i t i o n :  

E = % charge > 4 * grate aperture (101 

The o t h e r  terms i n  equa t ion  (9)  i n d i c a t e  t h a t  h ighe r  d i scha rge  r a t e s  
w i l l  r e s u l t  i f  t h e  m i l l  diameter,  g r a t e  open a rea ,  m i l l  speed o r  m i l l  
pulp  l e v e l  a r e  increased.  

I n t e r e s t i n g l y  t h e  p u l p  s . g .  was n o t  found t o  be  a  s i g n i f i c a n t  
v a r i a b l e .  However, S t a n l e y ' s  (1974) r e s u l t s  i n d i c a t e  t h a t  a s  t h e  
percent  s o l i d s  i n c r e a s e s  t h e  l e v e l  of pulp  wi th in  t h e  m i l l  rises i n  an 
a t tempt  t o  mainta in  t h e  d i scha rge  r a t e .  Th i s  e f f e c t  is probably due 
t o  t h e  r e s u l t a n t  i n c r e a s e  i n  v i s c o s i t y  r a t h e r  than  an s.g.  e f f e c t  p e r  
s e .  Work a t  t h e  Alcoa P i n j a r r a  r e f i n e r y  (Morre l l ,  1989) has  shown 
t h a t  t h e  p u l p  v i s c o s i t y  has  a  c o n s i d e r a b l e  i n f l u e n c e  on t h e  
performance o f  t h e  m i l l i n g  and c l a s s i f i c a t i o n  c i r c u i t s  and i t s  
exc lus ion  from e q u a t i o n s  d e s c r i b i n g  them r e s u l t s  i n  a  much weaker 
r e l a t i o n s h i p  between t h e i r  performance and o p e r a t i n g  v a r i a b l e s .  The 
v i s c o s i t y  - s . g .  r e l a t i o n s h i p ,  however, v a r i e s  from one o r e  type  t o  
another  and t h e r e f o r e  w i l l  no t  be c o n s i s t e n t  i n  t h e  JKMRC d a t a  base.  
Unfor tunate ly ,  v i s c o s i t i e s  a r e  on ly  a v a i l a b l e  f o r  t h e  Alcoa d a t a  s e t  
and t h e r e f o r e  a t  t h i s  s t a g e  i t s  e f f e c t  and t h a t  of  t h e  pu lp  s . g .  
cannot be enumerated. 

DISCHARGE FUNCTION 

Given a  d e f i n e d  and p e r f e c t l y  mixed m i l l  load,  we can c a l c u l a t e  a  
product i f  we know a  d i s c h a r g e  r a t e  f o r  a l l  s i z e  f r a c t i o n s .  The 
discharge  r a t e  i s  considered t o  be t h e  product of  two mechanisms, v i z .  
t r a n s p o r t  t o  and c l a s s i f i c a t i o n  by t h e  g r a t e .  Clear ly ,  

above t h e  g r a t e  s i z e  ( + I ,  t h e  d i scha rge  r a t e  w i l l  be zero  

below a  c e r t a i n  s i z e  (x,,,), t h e  pulp  w i l l  behave " l i k e  water" and 
t h e  d i scha rge  r a t e  w i l l  be a t  a  cons tan t  maximum. 

between t h e  s i z e s  x, and ~g t h e  d i scha rge  r a t e  w i l l  be dependent 
upon t h e  c l a s s i f i c a t i o n  behaviour of t h e  g r a t e .  The g r a t e  
c l a s s i f i c a t i o n  func t ion  used i n  t h e  model i s  a s  follows: 



The d i scharge  r a t e  f o r  a s p e c i f i c  s i z e  f r a c t i o n  is  there fore  t h e  
product of t h e  c l a s s i f i c a t i o n  function f o r  t h a t  s i z e  and t h e  maximum 
discharge ra te ,  i e ,  t h e  discharge r a t e  f o r  s i z e s  l e s s  than xm.. 

If  t h e  m i l l  contents  a r e  sampled, the  shape of t h e  discharge function 
can be e a s i l y  calculated.  Figure 11 shows t h e  discharge function from 
Alcoa's m i l l . .  

MODEL OPERATION 

The model a d j u s t s  t h e  o v e r a l l  discharge r a t e  u n t i l  it operates  on t h e  
mass t r a n s f e r  l i n e .  That is, i f  t h e  re ten t ion  of minus g r a t e  s i z e  
mater ial  is  above t h e  l i n e ,  t h e  discharge r a t e  is increased and vice 
versa. 

CONCLUSIONS 
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of both full scale and pilot scale autogenous and SAG mills. The 
effects of ball charge on grinding rates are quite systematic but do 
vary in magnitude for different ore types and different ball size 
distributions. 

Through the use of the JKMRC FAG/SAG mill data base tentative 
conclusions can now be drawn on the relative effects of operating and 
design variables on the mass transfer rate. First indications have 
shown that factors such as the charge porosity and the recycle load 
significantly affect the flow of material through the mill. 

The model can be used to interpolate between measured operating 
conditions and to provide estimates for variations in: 

ball load 
ball sizings 
feed sizings 
grate size 

and in circuit configuration with other comminution or classification 
devices. 

Hence it provides a powerful tool for: 

optimisation of existing circuit 

exploring design options (as an enhancement to traditional 
design techniques) 

a first pass grinding circuit design on the basis of small 
samples - even drill cores. 

FUTURE WORK 

The scale up properties of any model can only be reallistically 
assessed in a genuine design situation. The Leung model has now been 
used in several SAG mill designs in Australia. These plants are now 
starting to come on stream. We are currently carrying out audits at 
two of these plants. Some results should be available for 
presentation in September. 

General development of the Leung model is proceeding at the JKMRC with 
the objective of improving grinding rate and discharge rate 
predictions over a wider range of mill types and operating conditions. 
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