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Power draw of wet tumbling mills and its relationship to charge
dynamics—Part 1: a continuum approach to mathematical

modelling of mill power draw

S. Morrell

Synopsis

A theoretical approach to the modelling of the power
draw of industrial tumbling mills is described that is
based on the motion of the grinding charge. The charge
is treated as a continuum, which allows analytical solu-
tions to the equations that are developed. The model is
equally applicable to ball-, semi-autogenous and auto-
genous mills and contains a description of the power
draw of both the cylindrical section and the cone-ends.
Differences between the power draw of grate- and
overflow-discharge mills are described from consider-
ation of the different shapes and compositions of their
charges. A large database of industrial mill data is used
to demonstrate the accuracy of the model.

The rotation of a cylindrical tumbling mill moves the charge
that it contains and in so doing consumes energy. Hence, the
key to determining the rate at which this energy is consumed
(the power draw) lies in being able to describe the motion of
the charge. Taggart’s comments! in this regard are parti-
cularly relevant: ‘Net power is not capable of analytic
determination because of present ignorance of the internal
dynamics of the tumbling load’. However, until recently little
attention has been paid to developing models of the power
draw of industrial grinding mills that explicitly contain a
description of the dynamics of the charge. Notable excep-
tions have been the work of Lukasiewicz and co-workers?
and the discrete-element approach of Mishra and Rajamani,?
but, as is the case with other mill power models that can be
found in the literature,*-!? no comprehensive database is
provided to validate them conclusively.

In the present two-part contribution an approach to the
prediction of grinding mill power is described that satisfies
the need for a description of the dynamics of the charge, yet,
through the use of simplifying assumptions, results in models
that are easy to use. In this first part a model, referred to as
the ‘C-model’, of mill power draw is described that is based
on measurements of the way the charge in a wet grinding mill
moves. In the second part!® an empirical model, the ‘E-
model’, is described that is based on the response of the C-
model] but which contains fewer and simpler equations. Full
details of an extensive database of ball-, autogenous and
semi-autogenous mills, together with their associated power
draws, are provided. The accuracy of the models is illus-
trated with the use of this database.
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on 3 June, 1994; revised manuscript received on 24 August, 1995.
Paper published in Trans. Instn Min. Metall. (Sect. C: Mineral Process.
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General modelling approach

A model that treats the charge as a continuum (C-model) is
described here in Part 1 of the contribution. The approach
that is adopted in the model is to estimate the rate at which
the mill shell provides potential and kinetic energy to the
charge (i.e. the power draw due to motion of the charge)
from a description of the shape and motion of the charge.
The gross power draw is predicted by making allowances for
the power consumption associated with motor and drive-
train inefficiencies and with heat losses due to internal
friction within the charge, together with the energy required
for breakage by attrition/abrasion and for rotation of the
grinding media. The model can be expressed as:

Gross power =
No-load power + (k& x Charge-motion power) (D)

where gross power is the power input to the motor
(i.e. metered power); no-load power is the power input to
the motor when the mill is empty; charge-motion power is
the power associated with the movement of the charge; and
(k x charge-motion power) is the total power input to the
charge = net power. k is a lumped parameter that allows for
heat losses due to internal friction and the energy consumed
by attrition/abrasion breakage and rotation of the grinding
media, plus inaccuracies associated with measurements (and
related assumptions) of the shape and motion of the charge.
The power associated with the motion of the charge is esti-
mated by employing a mathematical description of the shape
and position of the charge and of the velocities of particles
within it. The data that are used to construct this description
were obtained by inspection of photographs of the motion
of a charge in a 0.3-m diameter glass-ended laboratory
tumbling mill. The technique has been described in an
earlier publication;!* more recent research!® has extended
the range of rotational speeds investigated. In addition,
whereas in the earlier work a smooth-lined mill was used,
in the later research 5 mm high lifters were installed. Mill
fillings in the range 15-45% of mill volume were tumbled in
the laboratory mill in the speed range 73—112% of critical.
No-load power was used to estimate the drive-train and
motor inefficiencies and is modelled using an empirical
relationship that is based on data from industrial mills. The
lumped parameter, %, was then determined by comparing the
no-load and charge-motion power with the gross power
draws, which were recorded during detailed surveys of the
performance of a large number of full-scale mills.

Modelling of dynamics of charge

Charge shape
The resistance that the mill motor feels to its rotation, and,
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Fig. 1 Schematic diagram of charge in tumbling mill

hence, its power draw, is caused only by that part of the
charge which exerts a force on the mill shell, the part of the
charge that is in free flight having no direct effect on the mill.
Similarly, the material in the kidney (Fig. 1) has little effect.
This can be inferred from measurements made on photo-
graphs of the mill charge. It is found that the volume of
material in the kidney varies according to filling and speed
conditions but is of the order of 3—6% of the total volume of
the charge. Since this material is effectively stationary, has
relatively small mass and lies quite near the centre of rotation
of the mill, the associated power draw will be significantly
less than 3-6% of the total. Therefore, those parts of the
charge in free flight and in the kidney can be ignored with
little effect on the accuracy of the model. The remainder of
the grinding charge (hereafter called the ‘active charge’)
forms a crescent-shaped mass, which is adequately approx-
imated by Fig. 2(a)). These simplifications enable a des-
cription of the general shape of a mill charge that renders its
mathematical treatment possible, yet at the same time
reflects the essential shape that is observed in practice. The
photographic evidence suggests that this shape is more
appropriate than the flat, inclined surface that has been the
basis of most grinding-mill power modelling over the past 30
years.*=® This approach, however, has been criticized by
some authors for excluding the kidney material.> In relation
to the development of a relatively simple but accurate power
draw model, the minimal effect on power draw that the
kidney has renders this argument trivial.

The condition represented in Fig. 2(a) typically reflects
that found in grate-discharge mills. In such mills the charge

normally runs with the interstices in the grinding media
rarely filled much beyond the point where all the voidage is
occupied by slurry. However, in an overflow-discharge mill
slurry can only leave the mill when it overflows the discharge
trunnion. Excess slurry is therefore present, giving rise to the
second charge shape shown in Fig. 2(b). In this case a pool of
slurry is present in addition to the grinding media. The slurry
pool is assumed to comprise a mixture of ore and water of
the same density as the discharge slurry. The remainder of
the charge comprises the grinding media, whose interstices
are fully occupied by slurry of the same density as the
discharge slurry. Thus, the only difference between the over-
flow- and grate-discharge configurations is the presence of a
slurry pool in the former. However, it should be noted that
even in grate-discharge mills a slurry pool may develop as a
result of insufficient grate and/or pulp-lifter capacity. The
level of slurry will vary depending on the volumetric flow rate
into the mill in relation to the grate/pulp-lifter capacity.!”
The boundaries of the grinding-media charge are defined
by radii with angular displacements of 85 and 0 and their
intersection with the mill shell and a circle that describes
the boundary between the kidney and the active charge
(Fig. 2(a)). The latter boundary has a radius r, and is
hereafter referred to as the inner surface of the charge. The
angles 05 and 0 describe the locations of the points in the
charge known, respectively, as the ‘shoulder’ and ‘toe’.

Variation in positions of shoulder and toe

Measurements were made on the photographs taken in the
laboratory glass mill of the angular displacement of the toe
and shoulder (8 and 6) as the mill speed and filling were
varied. The angular displacements were measured relative to
zero degrees at the three o’clock position (see Fig. 2(a)). The
results are plotted in Fig. 3, where it can be seen that the
effect of increasing mill speed is to raise the charge higher
and, hence, increase the shoulder angle. After leaving the
mill shell at the shoulder the charge falls to the toe region,
where it tends to accumulate while waiting for the mill to
accelerate it to its rotational velocity. As a result, for a given
mill filling the position of the toe appears not to vary over
most of the speed range, confirming the results of Liddell
and Moys.1® Eventually, a speed is reached at which centri-
fuging begins. At this point the shoulder and, in particular,
the toe angles tend rapidly to the 90° position. However, the
entire charge does not begin to centrifuge at the same mill

&

Fig. 2 (a) Simplified shape of charge for grate-discharge mills; (b) simplified shape of charge for

overflow-discharge mills
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Fig. 3 Variation of () shoulder angle and () toe angle with speed and mill filling

speed, the outer layers being the first to do so. Further
increases in speed cause more and more layers to centrifuge
until eventually the entire charge is centrifuging.

The mill filling is also seen from Fig. 3 to influence the
positions of the toe and shoulder. Larger mill fillings give rise
to higher shoulder angles and lower toe angles. As a result,
the mill speed at which centrifuging commences is seen to be
a strong function of the mill filling, higher fillings centri-
fuging at much lower speeds. This result is also in accor-
dance with the findings of Liddell and Moys!® and is a
departure from the view of a single centrifuging speed that is
dictated solely by the balance of gravitational and centrifugal
forces. In such an approach the effects of interaction are
ignored, It is clear, however, that the charge behaves as a
collective body and that interactions cannot be ignored.
Thus, owing to the pressure exerted by the charge the
material lower down the rising face of the mill helps support
the material higher up the face and causes it to reach a higher
position than would be the case with single particles moving
inside the mill, With greater mill fillings the effect is more
pronounced and gives rise to higher shoulder angles, This
phenomenon is related to mill speed and the magnitude of
the frictional forces within the charge, The latter forces are,
in turn, directly proportional to the weight of the charge,!819
As the relative magnitude of these forces is independent of
mill diameter, the relative position of the charge will be the
same regardless of mill diameter provided that the mill filling
and the percentage of critical speed remain constant,

Mathematical description of variation in toe and
shoulder positions

To describe the variation in toe angle the following form of
empirical equation was used:

0. ;A(l,e—3(¢c*¢))+§ (2

where O is toe angle, radians;* 4 and B are functions of the
fractional mill filling, ¥ ¢ is the fraction of the theoretical
critical speed ar which the mill is run; and ¢, is the experi-

*Symbols and their meanings are listed on page C52.

mentally determined fraction of the theoretical critical speed
at which centrifuging is fully established (i.e. when most of
the charge is centrifuging). ¢, is also a function of J, of the
form C + DjY,, where C and D are constants.

To ensure that at centrifuging speed the angular dis-
placement of the toe and shoulder converged to the same
value ("/, radians) the shoulder angle, 04, was expressed as a
function of ... The following form of equation was used:

05, radians = g - (eT - gj (E +F¥,) 3)

where E and F are functions of ¢.

The constants 4, B, C, D, E and F were fitted to the data
plotted in Fig. 3 by simple linear regression techniques,
giving the relationships:

T
8.0 =2.5307 (1.2796 — 7)) (1 — " 19426~ 9)) @

where
0. =9¢; $>0.35(3.364-%,) (4a)
¢.=0.35(3.364 =%); $<0.35(3.364 -3 (4b)
and
0 =g_[eT_g)x

x [(0.3386 + 0.10410) + (1.54 - 2.56730) 1]  (5)

The fit of these equations to the observed data is shown
graphically in Fig. 4, where measurement error bars associ-
ated with a 95% confidence interval are also displayed.

Motion of charge

The velocity of particles in different parts of the charge was
also determined from the photographs of the laboratory glass
mill. With the use of brightly coloured tracers and a slow
shutter speed the tracers appeared as lines of colour, the
lengths of which were proportional to their velocity (Fig. 5).
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It was found that the particles in the active part of the charge
described fairly concentric streamlines, the radial positions of
which were measured along with their associated tangential
velocities.

The velocities were normalized with respect to the speed
of the mill shell. Similarly, the radial positions of streamlines
were normalized with respect to the radius of the mill. Pairs
of data were, thus, generated that comprised a normalized
velocity, 77, and an associated normalized radial position,
R . Hence

Ry=— ©)
n rm
and
v,
Vn - je— (7)
Y

where ris radial position, 7, is mill radius at the wear face of
the mill-shell liner, ¥ is tangential velocity at r and 7 is
tangential velocity of the wear face of the mill-shell liner.
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Radial position, r, Velocity
measured from proportional
centre of mill rotation to length

Fig. 5 Schematic diagram illustrating approach to measurement of
velocity and location
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The data that were collected are plotted in Fig. 6. It can
be seen that, despite some scatter, there is an approximately
linear relationship between £ and ¥/, the gradient of which
is dependent on the mill filling. The scatter is a result of the
measurement technique that was employed, surging that
occurred in varying degrees under all conditions and the
variation in velocity along streamlines.?? The plots also show
the relationship between tangential velocity and radial
position under the assumption that the charge is fully locked
(‘no-slip’ condition). It is apparent that an angular velocity
gradient exists in the charge that is a function of mill filling.
This is a direct result of the occurrence of slip within the
charge. As the frictional force is proportional to the applied
force acting in a direction normal to it, it is to be expected
that the increased bed weights associated with larger mill
fillings will generate greater frictional forces in the charge
and, therefore, that less slip will occur within it. Hence, as
the mill filling is increased the velocity gradient with respect
to the mill radius will tend towards the no-slip condition.

Mathematical description of velocity profile

The tangential velocity, ¥/, at a given radial position, # can
be expressed in terms of a rotational rate, &,, by means of
the equation




N,=— ®
27r

Through use of a simple linear relationship between the
normalized tangential velocity and the normalized radial
position, and by expressing velocity in terms of rotational
rate, the following relationship was derived:

N, = M )

r(rm' - r*)
where r* = zr,

2= (1-3,)045%2 (9a)

r, is inner surface radius of the charge and r_ is mill radius.

From equation 9 r* is the theoretical normalized radial
position at which N, = 0. This position was related to the
inner surface radius of the charge, r, by the parameter 2z
using measurements of the position of r; that were made on
photographs of the mill charge. The z parameter was found
to be a function of the fractional mill filling, ¥,. Hence, from
equations 9 and 9a it can be seen that as ¥, increases N, tends
to N —i.e. the no-slip condition is approached.

Power-draw equations

The approach that was adopted in the development of the
model was to consider the rates at which potential and
kinetic energy is provided to the charge. As power can be
defined as energy per unit time, the rates at which potential
and kinetic energy is provided to the charge will provide an
estimate of the power draw of the mill.

With reference to Fig. 7, consider an element within the
surface ABCD of length L and width dr. The area of the
element is given by Ldr. The tangential velocity of particles
travelling through this surface is V, and, hence, the volu-
metric flow rate through the surface is V,Ldr and the mass
flow rate is V, p_Ldr.

The path of particles travelling through the element of
surface is assumed to be as shown in Fig. 7. Thus, the rate at
which potential energy is' imparted to them is given by
V.p.Ldrgh, where the height difference, %, is given by
h = r(sinfg — sinO,). The rate at which kinetic energy is
imparted to the particles is given by (Vr3 p.Ldr)/2.

If it is assumed that none of the energy of particles passing
through surface ABCD is subsequently recovered by the

particle path

Fig. 7 Schematic diagram of mill charge used for C-model (see
text for explanation)

mill, the sum of the rates at which potential and kinetic
energy is generated for all particles passing through surface
ABCD, P, is given by

r

P = '[ (V; Lperg(sinfs —sinBr) +

4]

V2 Lp.

Also
V,=2mrN, (10a)

Expressing V, in terms of N, therefore gives

™m

3
2nN,r)" Lp
P = J ZTtN,rszcg(sinGS—sinBT)+¥ dr
L]

an

From equation 9 the rotational rate, N, , was related to the
radial position, r, which allowed for the observed slip that
occurred as r varied between r_ and r;. Hence, substitution
for N, in equation 11 gives

-

m

J.r(r —zn)dr+
.

i

2ngLp Ny, 1 (sinB—sin6y)

-
(7in — 21)

4P Lp N2 »2 m
p—D e B8 J.(r—zri)3 dr 12)

(m—2) 3
Therefore

_ g Lpe Nyt

P = 212 = 3zr2r+r2(32 -2
t- 3(Tm_z'}) [ tm = 3argn+17 (32 )]X

X (sin 6g —sin GT) +

N, .7 ¥ )
m'm 4_ 4o 1y4
ol et

Equation 13 was derived on the assumption that the charge
has the shape shown in Fig. 2(a) and, hence, is applicable to
grate-discharge mills. For overflow-discharge mills the effect
of the slurry pool must be incorporated. The presence of the
slurry pool results in a reduction of the power draw of the
overflow mill relative to a grate-discharge unit of the same
size. Such differences in power draw have been incorporated
in an empirical manner in some mill-power equations.%!4
Mechanistically, this effect can be considered to be caused by
the buoyancy force to which the grinding charge is subject as
it falls through the slurry pool. This part of its motion occurs
between the surface of the pool and the toe of the grinding
charge as defined by 8, and 6, respectively, and results in
a reduction in the rate at which potential energy is imparted
relative to the situation in a grate-discharge mill.

To incorporate this effect a buoyancy term was added to
equation 13—resulting in the following single equation,
which describes both grate and overflow mills:
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ngL Nyt

3(rm - :,'ri)

B [Zr,?, —3zr,%ri+ri3(3z—2)]><

X [pe(sin Bs — sin 01 ) +py(sin by — sin 61 )|+

N_r T 3
_mm_)] [(rm—zri)4 —ri4(z—1)4:| (14)

(rm —2n

+ ch[

where Pp is density of slurry, p, is density of grinding charge,
8. is angle of slurry pool (for grate-discharge mills 65 =
61), 84is given by equation 5 and O is given by equation 9.

The level of the slurry pool depends largely on the dia-
meter of the discharge trunnion. A larger trunnion diameter
will result in a lower slurry level, and vice versa. From simple
geometry the angle of the slurry pool (Fig. 8) can be esti-
mated from the equation

I'm

r
6o = ®+arcsin [—[] (14a)

In the absence of data on the diameter of the trunnion it can
be assumed that it is equal to one-quarter of the mill dia-
meter. In this case 65 = 3.395.

Conical end-sections

Some mills, particularly those with large diameter to length
ratios, are not completely cylindrical but have ends of conical
form. The charge that moves in this section of the mill also

Discharge trunnion

Slurry pool
Slurry overflow
level

Fig. 8 Schematic diagram of slurry level in overflow-discharge mill

Shoulder

Trunnion

Toe

Fig. 9 Schematic diagram of shape of charge in conical ends
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draws power and, hence, must be considered if the overall
power draw of the mill is to be determined. The shape of the
charge in such mills is assumed to be as shown in Fig. 9. For
simplicity the shape is shown only for the grate-discharge
mill.

It is assumed that the positions of the toe and shoulder are
the same in the cone-ends as in the cylindrical section, but,
owing to the keying effect of the end lifters, there is no
angular velocity gradient in this part of the charge.

Using a similar approach to that adopted for the power
draw of the cylindrical section, the following equation was
derived for the combined power draw of the two conical end-
sections:

nLy8 Ny
31

C

{(r,i — 4rmri3 + 3ri4) X

X [pc(sines—sineT) +pp(sin B —sinbro )}} i

2m3 N2 L
it = (12 = Sttt +477) 15)
5(rm 1)

A full derivation of equation 15 is given in Appendix 1.
Equations 14 and 15 constitute the two principal equa-
tions for calculating the power draws associated with the
charge in the cylindrical and conical end-sections, respec-
tively, of a wet tumbling mill. Apart from design parameters
(such as the diameter and length, etc., of the mill) and the
shoulder and toe angles, the equations contain three vari-
ables whose values must be known before the equations can
be used. These are: r, the inner surface radius of the charge,
P.> the density of the charge, and Pps the density of the pulp.

Radius of inner surface of charge,

The inner surface of the charge defines the radial limit of the
active part of the charge and it can be represented by its
radial distance, £, from the axis of rotation. If the locations of
the toe and shoulder are known, along with the volume of the
charge between these points, # can be found from simple
geometry:

0.5
2
n= rm[l—4—nﬁ?[ ) 16)
2n+ BS -8

where B is the active part of the charge expressed as a fraction
of the total charge. This fraction will be proportional to the
time that material spends in the active part of the charge
relative to the time that it takes to complete one circuit of the
entire charge. Hence

B= an

where 7 is mean time taken to travel between the toe and
shoulder within the active part of the charge and z is mean
time taken to travel between the shoulder and toe in free fall.
¢, and 7; were approximated as follows:

28— 6.4+ 0g
o as)
2N



where the mean rotational rate is

_ Ny
N=—— (19)
2
s i 0.5
2r(sinfg —sin
1= [(__S_—I)] (20)
g
where the mean radial position, 7, is
" 21y, 05
Fe— (14 [1o— -t 21)
2 2n+0g — 0

By substituting equations 17-21 into equation 16 r; can be
estimated.

It should be noted that the fractional mill filling, ¥,, which
was used to calculate r;, is based on the cylindrical section.
This radius is used to represent the location of the inner
surface of the charge when the mill is in operation. If the mill
has a conical ends, this surface extends into the cone-ends.
Hence, the same value of ; is also used in the calculation of
cone-end power draw (see equation 15). Therefore, when
conically ended mills are being considered §, still refers to the
fractional mill filling in the cylindrical section only. No
allowance needs to be made for the filling in the cone
sections as this is automatically accounted for in the cone-
end power equation.

Charge and pulp density
The charge density, p_, can be estimated from the equation'4

pc =
S S
JiPo(1—E+EURY) + Fp(pg — P, )(1 — E) + JEU(1 - N,)

Ji

(22)

where E is fractional porosity of charge; Pp is pulp density =
fractional solids content (by volume) of discharge slurry; and
U is fraction of grinding media voidage occupied by slurry.

In the absence of data for E, ]\?and U values of 0.4, 0.5
and 1, respectively, can be agsumed, In this case equation 22
simplifies to

0.6 7 (pg — P,)
p.=0.8p, + ——  + 0.2 23)
v

No-load power

To be practically useful a power model needs to predict
accurately the gross (i.e. metered) power draw. The
difference between gross and net power draw in a mill is due
to losses associated with various electrical and mechanical
components. The main losses occur in the motor, gearing
and bearings. None of these remains constant over the mill’s
full operating range. Some, however, may have a fixed
component—for example, losses in the bearings due to
friction are dictated by the weight of the mill when empty (a
fixed component, though even this will vary as liners and
lifters wear) and the weight of the mill charge (a variable
component). In most, if not all, full-scale operating plants

10004
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Fig. 10 Observed versus predicted no-load power draw

the only data that are measured are gross power and/or
current and it is therefore not possible to measure directly
the electrical and mechanical power losses. In rare cases the
no-load power (the gross power drawn by the mill when
running empty) is known from commissioning or main-
tenance records. Alternatively, if the mill has been emptied
for relining, the no-load power is sometimes recorded at
start-up. Such data indicate the magnitude of some of the
components of the power loss.

To determine the relationship between no-load power and
mill design parameters ten data sets were analysed from nine
mills with diameters ranging from 1.75 to 9.5 m. The fol-
lowing empirical relationship was developed:

No-load power, KW = 1.68 D295 [¢ (0.667 L, + L)]°82
(29

where D is mill diameter, L is length of cylindrical section, Ly
is length of cone-end and ¢ is fraction of critical speed.

A plot of the observed no-load power draws and of the
predicted no-load power draws that were obtained with this
equation is presented as Fig. 10. Scatter is apparent in the
data and is attributed to differences in the mechanical design
and condition of such components as bearings. This is illus-
trated by the data points for the lowest power draws, which
represent readings taken from two different pilot mills with
the same nominal dimensions.

Calibration and validation of model

Database

A total of 82 data sets were collected to calibrate and test the
validity of the model. Details of the range of tumbling mills
covered by the database are given in Table 1. Full details of
the mills are given in Part 2 of the contribution.1?

Calibration of model

Equations 14, 15 and 24, which contain no unknowns, can
be used to estimate the no-load and charge-motion power
requirements. This leaves the parameter % to be determined,
after which equation 1 can be used to predict the gross power
draw:
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Gross power =
No-load power + (k x Charge-motion power) @))]

Information for all the mills in the database was used to
select a value of & that provides the best fit to the data.
The resulting value of 1.26 implies that the energy consumed
by sound, heat generated by sliding friction in the charge,
attrition/abrasion breakage and rotation of the grinding
media, along with a component arising from inaccuracies in

the model, amounts on average to an additional 26% of the
power draw due to the motion of the charge. This compares
with estimates by Harris and co-workers® of up to 20% and
Rolf and Simonis’?! figure of more than 30% for power
associated with sliding motion.

Accuracy of model

The apparent accuracy of the model (with the above value
for k) was evaluated from the standard deviation of the
relative errors associated with predictions of the individual

Table 1 Summary details of mill database
Ball-mills Semi-autogenous Autogenous

mills mills
Diameter, m 0.85-5.34 1.75-10.2 1.75-10.2
Belly length inside liners, m 1.52-8.84 0.45-7.95 0.45-5.18
Length/diameter ratio 1.00-1.83 0.33-1.50 0.33-1.0
Per cent of critical speed 61-83 48-89 72-78
Ball filling, vol% 20-48 3-25 0
Total filling, vol% 20-48 7-38 10-31
Specific gravity of ore 2.6-4.5 2.6-4.1 2.7-4.6
Number of mills 40 23 6
Number of data sets 43 31 8
Power draw, kW 6.2-4100 10.4-10 013 9.3-8000
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Table 2 Accuracy of model
Relative error, %

Ball-mills
Mean -0.4
Standard deviation 5.4
95% confidence interval +10.5
Autogenous/semi-autogenous mills
Mean +0.4
Standard deviation 4.6
95% confidence interval +9.0
All mills
Mean <0.1
Standard deviation 5.0
95% confidence interval +9.8
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1

power draws of each of the mills in the database. The results,
together with the 95% confidence interval, are given in
Table 2. The overall standard deviation was 5.0%, giving rise
to a 95% confidence interval of +9.8%. Graphically, the
accuracy of the model is also illustrated in comparisons of the
observed and predicted power draws in Fig. 11. It should be
noted that, for illustrative purposes, the plots show the ball-
mill and semi-autogenous/autogenous data separately as well
as together. In all cases, however, the predictions of power
draw were made with the same model, and a worked
example is given in Appendix 2.

Validation of model

Given the size and diversity of the database, the good fit of
the model predictions to the data is in itself confirmation that
the C-model accurately predicts the power draw of industrial
grinding mills. Ideally, however, validation needs to be
carried out with independent data—i.e. with data other than
those contained in the database. Although from a laboratory
mill, the data obtained by Liddell?? present an opportunity
to validate the response of the C-model to changes in mill
speed and load. Liddell used a 0.545-m diameter mill with a
length of 0.308 m. It was charged with steel balls and was
run at a range of speeds. In one of his series of tests the mill
was charged with steel balls to a filling of 40% and a slurry
consisting of 46 vol% sand in water was then added. The
speed was varied in the range 50-95% of critical and the
power was determined from a torque meter on the motor
output shaft and the mill’s rotational rate.

Liddell’s original data, less the no-load power of his mill
(0.015 kW), are shown in Fig. 12 with the C-model’s
predictions of net power draw superimposed. Error bars
associated with a 95% confidence level are also shown. It can
be seen that the predictions of the model are particularly
close to Liddell’s data in the speed range 70-90% and that in
all cases the observed data fall within the 95% confidence
interval of the predictions.

Conclusions

A mathematical model (the C-model) of the power draw of
tumbling mills has been developed that is based on the
observed motion of the charge inside a glass laboratory mill.
Comparison of the predictions of power consumption made
by the model with information held in a database consisting
of 82 data sets for ball-mills, semi-autogenous mills and
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Fig. 12 Observed variation in net power draw with speed (after
Liddell®?) with predictions of C-model superimposed

autogenous mills ranging in power draw from 6.2 to 10 000
kW showed the predictions to be accurate. Liddell’s data??
for a laboratory mill that was run at a wide range of speeds
were also used to validate the model. Good agreement was
found.

In Part 2 of the present contribution'® a much simpler
empirical model is described whose performance is based on
that of the C-model. In addition, full details of the mill
database that was used to validate the models are provided.
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Symbols

D Diameter of cylindrical section of mill inside liners, m

E Fractional porosity of charge

g Accdleration due to gravity, m s~2

T8 Fraction of mill volume in cylindrical section
occupied by balls (including voids)

T Fraction of mill volume in cylindrical section
occupied by balls and coarse ore charge (including
voids)

k Lumped parameter used in calibration of model

L Length of cylindrical section of mill inside liners, m

L Length of cone-end, measured from cylindrical

o

section, at radius 7.

Ly Length of cone-end, m

L Length of charge surface within cone-ends, m

N_  Rotational rate of mill, rev s~

N, Rotational rate of particle at radial distance r, rev s~!

P, Theoretical power draw associated with motion of
charge in cylindrical section, kKW

P, Theoretical power draw associated with motion of
charge in cone-ends, KW

r Radial position, m

r* Theoretical radial location in active charge at which
velocity equals zero

7, Radius of cone-end at distance L. from cylindrical
section, m

7 Radial location of inner surface of charge, m

T Radius of mill inside liners, m

r, Radius of discharge trunnion, m

R, Normalized radial position; R =r/7,,

S Fractional solids content (by volume) of discharge
slurry

L, Time taken to travel between toe and shoulder in
active charge

Le Time taken to travel between shoulder and toe in free
flight

U Fraction of grinding media voidage occupied by
slurry

v, Tangential velocity of particle at radial distance r,
m s

V. Tangential velocity of mill-shell inside liners, m s~!

v Normalized tangential velocity; V, = V./V_|

Greek

B Fraction of total charge that is in active region

o] Fraction of theoretical critical speed

[0} Fraction of theoretical critical speed at which centri-

fuging actually occurs

8¢ Angular displacement of shoulder location at mill
shell, radians

GT Angular displacement of toe location at mill shell,

radians

0o Angular displacement of surface of slurry pool at toe,
radians

P. Density of total charge, t m™3

Py Density of ore, t m™>

Py Density of steel balls, t m™3
pé Density of discharge pulp, t m—3

Appendix 1
With reference to Fig. 1, for an element of length dL_ in

the cone section the power-draw equation has the same form
as for a cylindrical vessel (equation 11 of the main text).
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Fig. 1 Schematic diagram of cone-end of mill

Hence, for the element of length dL_ at a cone radius of r,
the power draw (Pyr ) for a grate-discharge mill is given by

T
Py = dLCJ.[ZnNm pcrig(sinBg —sin @)+ 4n3N3.‘r3pc] dr
r
¢Y)
As the radius of the cone varies with its length, for the entire
cone equation 1 must be integrated with respect to the length

of the cone, L . Hence, the total power draw associated with
both cone-ends, P, is given by

Lir
ﬂ:zIJPENﬁmﬂﬂﬁn%—ﬁn&ﬂ+
o
+(4n3bﬂgr3pc)drdlt] @)
From geometry

[l<:=wl";l (3)

~Lyd
dL, =97
(rm - rt)

C)

Substitution of equation 4 into equation 2 gives

P, = 21Ny, p. g(sinBg —sin GT)J. J.r drdr, +
(rm - rt) rn

rm rC
+4m3 N2 pc-“‘ra_drdrC 5)
rc ri



2L
:( d) %nNmpcg(sinGS—sineT)x
m—h

X (ré.l - 4rmri3 + 3ri4) +
1
TN, el = St + 4r7) 6)

Using the same approach as was adopted for the cylindrical
section, equation 6 can be extended to encompass overflow
mills. Hence

P = nLygNn

L _ gy 3 +3rd) x
(o 3(rm_rt) {(rm m°i r])

X [pc(sin 85 —sinBr)+py(sin O —sin GTO)]} +

2N L, -
g BEE dP (rrf1 - Srmri4 + 4ri5) )
s(rm 2 rt)
Appendix 2

To illustrate the use of the C-model a worked example is
given for a semi-autogenous mill. The equation numbers
given in the calculation steps refer to the equations of the
main text.

Model input data
To execute the model certain design and operating data are
required, These are summarized in Table 1.

Table 1 Design and operating data

Diameter inside liners, m 8
Belly length inside liners, m 4
Centre-line length inside liners, m 6
Trunnion diameter inside liners, m 2
Mill rotational speed, rev min~! 10.77
Fraction of critical speed 0.72
Specific gravity of ore 2.75
Specific gravity of balls 7.8
Total fractional mill filling of cylindrical section 0.35
Ball fractional mill filling of cylindrical section 0.10
Solids content of discharge slurry, vol% 45.9
Discharge mechanjsm Grate

Calculation steps

I—Calculate charge density, p "

Input data: p, = 2.75; Pp = 7.8; 7= 0.35; -713 =0.1; pp = 0.495
Assume U=1and E=04

From equation 22: p_ = 3.237

2—Calculate toe angle, O, slurry toe angle, 810, and shoulder
angle, Og

Input data: ¥, = 0.35; ¢ = 0.72

From equation 4b; ¢, = 1,0549

From equation 4: 0., = 3.9198 radians

As the mill is a grate-discharge unit, 8., =01

From equation 5: 6 = 0.8519 radians

3—Calculate inner surface radius of charge, r,

Input data: ¥, = 0.35; r,, = mill diameter/2 =4 m; N, = (mill
rotations per minute) /60 = 0.179 rev s !

From previous calculations: 6., = 3.9198 radians; B =
0.8519 radians

From equations 18 and 19: ¢, = 5.7

From equations 20 and 21: 7, = 0.926

From equation 17: p = 0.856

Then, from equation 16: r, = 2.576

4—Calculate z parameter
Input data: ¥ = 0.35
From equation 9a: z = 0.8226

5—Calculate power draw due to motion of charge in cylindrical
section, P,

Input data: ¥, = 0.35; r | = mill diameter/2 = 4 mj; N_ = (mill
rotations per minute) /60 = 0.179 revs ;L =4m

From previous calculations: 8., = 3.9198 radians; 810 =613
8 = 0.8519 radians; z = 0.8226; r, = 2.576; p_ = 3.237; Pp =
0.495

Use g=9.814 m 52

From equation 14: P, = 2809 kW

6—Calculate cone-end charge-motion power, P,

(It should be noted that the fractional mill filling, ¥,, used in
the previous calculation step is based on the cylindrical
section. This is used to calculate where the inner surface of
the charge is when the mill is in operation and is described by
the radius 7. If the mill is conically ended, this surface
extends into the cone-ends. Hence, the same value of 7 is
also used in the calculation of cone-end power draw (see
equation 15). Therefore, when cone-ended mills are being
considered J, still refers to the fractional mill filling in the
cylindrical section only. No allowance need be made for the
filling in the cone sections as this is automatically taken into
account in the cone-end power equation.)

Input data: r, = 1 m; L; = (centre-line length — belly length) /2
=1 m; (all other parameters required have been determined
in calculation step 5)

From equation 15: P, = 378 kKW

7—Calculate no-load power
Input data: D=8m;¢=0.72;L=4m;Ld= 1m
From equation 24: no-load power = 322 kW

8—Calculate gross power

Total power draw due to charge motion in the cylindrical
section and cone-ends = P, + P_ = 3187 kW

No-load power = 322 kW

Calibration factor, 2 = 1.26

From equation 1: gross power = no-load power + (k& X
charge-motion power) = 4338 kKW

The calculation steps for a ball-mil] are identical to those
given above. For most ball-mills the total fractional mill filling
should be set to the same value as the ball fractional mill
filling—i.e. ¥, =Jg. This is equivalent to assuming that the
rock charge occupies the voidage in the ball charge without
causing significant dilatation of the ball bed. However, in
some primary ball-mills in which coarse feed is being ground
some dilatation may occur. In these cases allowance must be
made by making ¥, greater than ;. In addition, where the
mill is an overflow-discharge unit and the diameter of the dis-
charge trunnion is known the slurry pool angle, 01> must be
calculated using equation 14a. If the diameter of the discharge
trunnion is not known, 6.4 should be set to 3.395 radians.
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