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ABSTRACT 

 
Much of the currently available rock characterisation tests have been 
developed specifically for rod, ball and ag/sag mills.  This presents 
problems for High Pressure Grinding Rolls (HPGR) circuit designers as, 
although tests can be carried out at the pilot scale to provide appropriate 
machine parameters, they are only applicable to the ore that was tested.  
In most cases only limited quantities of ore are available for piloting, this 
being usually restricted to a single ore type. A full scale circuit design can 
be quite reliably made using these pilot data but the problem then 
remains as to how to determine what the circuit response will be to other 
ore types in the orebody for which pilot quantities are not available. 
Tumbling-type rock characterisation tests such as the Bond rod and ball 
will work indices do not appear to be correlated with HPGR performance 
and hence these cannot be used.  The drop-weight index (DWi), 
however, does appear to be strongly related to HPGR performance.  
This parameter is derived from the SMC Test, which has been designed 
to accommodate small quantities of drill core.  The way that the DWi is 
correlated to HPGR performance and how it can be used in HPGR circuit 
design and performance forecasting is described in this paper, using 
data from a wide range of ore types. 
 

INTRODUCTION 
 
Rock characterisation testing has tended to have developed so that 
specific tests are intended to apply to particular comminution machines 
eg Bond’s crushing, rod milling and ball milling work index tests for 
crushers, rod and ball mills and the JK A,b parameters and the SPI test  
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for SAG milling.  To date a specific test has not been developed which 
has been shown to apply to High Pressure Grinding Rolls (HPGR).  The 
problems associated with this are two-fold.  Firstly, without a relevant 
laboratory test, determining the influence of ore variability on a 
proposed new or existing HPGR circuit can only be done by treatment 
through a laboratory or pilot-scale machine.  Minimum sample 
requirement to do so is about 30-50 kgs per ore type (laboratory-scale 
machine).  When only small quantities of drill core are available this is 
clearly not feasible.  The second problem is that in greenfield design 
studies large sums of money can be spent on conducting variability 
tests on drill cores, which often include testing for AG/SAG mill ore 
breakage characterisation.  If an HPGR-specific ore characterisation 
test were available it would have to be carried out in addition to the 
AG/SAG test, adding to the cost of the test programme.  If the final 
choice of comminution circuit is an AG/SAG-based this cost will be 
wasted.  Ideally therefore a test is required that is equally applicable to 
AG/SAG mills and HPGRs.  The SMC Test meets this requirement. 
 

SMC TEST and the DWi 
 
The SMC Test is designed to make use of relatively small quantities of 
sample such as small diameter drill core.  It is described in some detail 
in a complementary paper in this conference “Design of AG/SAG mill 
Circuits Using the SMC Test” and hence no further description of the 
test is made in this paper.  Of importance, however, is the parameter 
DWi, which is obtained from the SMC Test and which it has been found 
is correlated with the operating work index of HPGR machines when 
treating different ore types.  The DWi is a rock strength parameter and 
not surprisingly is correlated with the Point Load Strength as Figure 1 
shows.  These data come from analysis of data from 34 different rock 
types.  Considering how an HPGR works (Figure 2) it is to be expected 
that rock strength should be related to the specific energy required to 
grind it in these devices.  As the rock is fed into an HPGR the rotation of 
the rolls draws material in and progressively compresses (and breaks) it 
as it moves down to the point of minimum gap.  The resistance of the 
rock to this compression tends to force the rolls apart, which in turn is 
resisted by the rolls due to the pressure exerted by the hydraulic 
system.  A rock with a higher strength will therefore cause the HPGR to 
do more work to draw it in to the rolls, compress and break it. 

 
OPERATING WORK INDICES OF HPGR MACHINES 

 
The performance of grinding devices can be represented using so-
called operating work indices.  In theory this technique reduces the 
performance of a device treating a particular rock type to a single 
number which should be independent of the feed and product size.   
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Perhaps the best known of this type of approach is the one put forward 
by Bond (1952).  His well known equation for relating specific energy to 
the feed and product size of a grinding circuit is given in equation 1. 

( )5.05.010 −− −= FPWW i     (1) 

where 
W = Specific energy of the comminution device  
Wi = Index related to the breakage property of an ore ( eg  
  Bond ball work index) 
P = 80% passing size for the product 
F = 80% passing size for the feed 
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Figure 1 – Correlation Between the Point Load Strength and the DWi 
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Figure 2 – Schematic of an HPGR 
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Where it is required to predict the specific energy of a grinding device 
the value for Wi is obtained from a suitable laboratory test eg Bond’s 
ball work index test.  Where specific energy and size distribution data 
from an operational device are known, ie W is known from the power 
draw/feedrate and the F80 and P80 have been measured from surveys, 
equation 1 is turned around as per equation 2 and Wi is then referred to 
as a “Bond Operating Work Index” (BOWi). 

( )5.05.010 −− −
= FP

WBOWi     (2) 

The operating work index is viewed as reflecting a combination of ore 
properties (hardness) and the energy efficiency of the device.  However, 
the ability of operating work indices to reflect these parameters in a 
realistic manner is only as good as the equation on which they are 
based.  Hence any bias in equation 2 will lead to erroneous conclusions 
concerning the values of BOWi.  Whereas for ball mills equation 2 may 
be applicable, for primary comminution devices such as AG and SAG 
mills it is not applicable as there is a significant bias as Figure 3 
demonstrates.  As can be seen there is a clear trend in the BOWi 
values derived from a large number of surveys from a pilot AG/SAG mill 
treating a range of ore types.  This trend indicates that the BOWi 
decreases with a decrease in particle size, independent of ore type and 
operating conditions.  As it is unreasonable to conclude that the ore 
hardness reduces as particle size reduces or the energy efficiency 
improves as the mill grinds finer, it is likely that equation 2 is wrong 
(Morrell 2004).  As HPGRs operate in the particle size range near to 
that of AG/SAG mills, it is expected that equation 2 will also not be 
applicable to these devices.   
 
An alternative to equation 2 that does appear to apply to AG/SAG mills 
(and therefore possibly HPGRs) is the one suggested by Morrell 
(2004a), and is given below. 

( ) ( )( )FfPf
i FPMW −= 4     (3)  

where 
W = Specific energy of the comminution device  
Mi = Index related to the breakage property of an ore  
P = 80% passing size for the product 
F = 80% passing size for the feed 
 
Turning around equation (3) the Morrell Operating Work Index (MOWi) 
is obtained as shown in equation 4. 

( ))()(4 FfPfi FP
WMOW

−
=     (4) 

This equation is very similar to equation 2 in general form.  However, 
rather than a constant exponent of -0.5 it has a function (f(x)) whose  
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value depends on the magnitude of P and F.  Graphically the function is 
shown in Figure 4.  The equation representing the function is: 

)1000000/295.0()( XXf +−=    (5) 
Where X  =   80% passing size in microns 
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Figure 3 – Bond Operating Work Indices for a Pilot AG/SAG Mill Treating 

a Range of Ore Types (pc=pebble crusher; npc=no pebble crusher) 
 

HPGR Operating Work Indices 
 
If, in the case of HPGR machines, an operating work index can be 
predicted then using equation 3 the kWh/t that such devices would 
require could also be predicted for a given feed and product P80.  
However, one of the operating features of HPGR machines is that their 
apparent size reduction efficiency varies with the applied grinding force.  
This is illustrated in Figure 5 where it can be seen that the MOWi as 
defined by equation 4 increases with the specific grinding force.  The 
data shown relate to a pilot HPGR treating the same ore and hence 
changes in the MOWi reflect changes in energy utilisation efficiency.   
Hence it is important that when operating work indices are used for 
HPGRs the associated specific grinding force is also quoted. 
 
To try and obtain an equation that could predict the operating work 
indices of HPGR machines, operating data from 21 separate tests using 
laboratory and pilot scale units were collected.  Using equation 4 the 
MOWi values (expressed in terms of kWh/m3) were determined in the 
specific grinding force range 2.5-3.5 N/mm2.  These were then plotted  
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against the associated DWi values of the ores being treated.  Figure 6 
was the result, indicating a strong correlation between the values.  This 
contrasts markedly when the same HPGR operating data are 
represented in terms of BOWi values and are plotted against the Bond 
ball work index (Bwi) (Figure 7).  No significant correlation is evident. 
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Figure 4 – Variation of f(x) with 80% passing size 
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Figure 5 – Operating Efficiency as Function of Specific Grinding Force 
 
Figure 6 now provides a means for predicting the energy requirement of 
an HPGR circuit where the Dwi is known.  This can be determined using 
the SMC Test on a suitable drill core sample.  The MOWi is then read 
off Figure 6.  An HPGR circuit feed and product size is then chosen 
and, using equation 3, the HPGR specific energy is predicted. 
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Figure 6 – Relationship Between MOWi and Dwi for HPGR Machines 

(Specific Grinding Force Range 2.5 – 3.5 N/mm2) 
 

COMPARING HPGR AND AG/SAG CIRCUIT ENERGY 
REQUIREMENTS 

 
By using the relationship in Figure 6 with a given circuit feed and product 
P80, the power requirement of an HPGR circuit can be estimated.  Using 
the HPGR circuit P80 and knowing the ball mill work index and final grind 
P80 it is also possible to estimate what the ball mill circuit power 
requirement will be as well, thus giving the total comminution circuit 
power requirement.  The same can also be done for an AG/SAG mill 
followed by a ball mill using the Dwi equation for predicting AG/SAG mill 
specific energy, which is shown in equation 6 (Morrell, 2004b).  This 
equation has been validated using 46 different data sets and gives a very 
good prediction of the specific energy of AG/SAG mill circuits as Figure 8 
illustrates. 
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Figure 7 – Relationship Between BOWi and Bwi for HPGR Machines 
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S  = K.F80

a.DWi
b.(1+c(1-e-dJ))-1. φ e.f(Ar)       (6) 

         
where 
S = specific energy at the pinion 
F80 = 80% passing size of the feed 
DWi = drop-weight index 
J = volume of balls (%) 
φ = mill speed (% of critical) 
f(Ar) = function of mill aspect ratio  
a,b,c,d,e,f,g = constants 
K= function whose value is dependent upon whether a pebble crusher is 
in-circuit 
 
The approach in determining the ball mill circuit specific energy is 
similar to that put forward by Bond though equation 3 is used rather 
than Bond’s equation (1) for the reasons stated earlier.  In this case Mi 
is the ball mill work index and is determined using data from exactly the 
same ball mill laboratory test procedure that Bond developed.  
However, the equation for determining the value of Mi from the test data 
is different and is given in equation 7.  Equation 7 was calibrated using 
26 sets of data from ball mill circuits which are fed by AG and SAG mills 
and when combined with equation 3 gives the predicted values shown 
in Figure 9.  It could be argued that as equations 3 and 7 were 
calibrated using ball mills in AG/SAG circuits that they would not 
necessarily be applicable to ball mills following HPGRs.  This will need 
to be tested as more and more HPGR/ball mill circuits are built.  
However, pilot data such as those shown in Figure 10 strongly suggest 
that HPGR circuit product size distributions have a very similar shape to 
those from AG and SAG mill circuits.  It is therefore reasonable to 
assume that, ignoring the possible influence of micro-cracking, the ball 
mills following HPGRs will behave in a similar manner to those in 
AG/SAG circuits. 

( ) ( ))()(23.0
1

5.12
FfPfi FPGbpP

M
−

=    (7) 

where 
Mi = Morrell ball laboratory ball work index (kWh/tonne) 
P1 = closing screen size in microns 
Gbp = net grams of screen undersize per mill revolution 
P = 80% passing size of the product in microns 
F = 80% passing size of the feed in microns 
 
Having established equations which can reasonably accurately predict 
AG/SAG, HPGR and ball mill specific energy requirements it is possible 
to look at the differences between AG/SAG-ball mill and HPGR-ball mill 
circuits in terms of their overall energy requirements. 
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Figure 8 – Observed vs Predicted AG/SAG Circuit Specific Energy 
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Figure 9 – Observed vs Predicted Ball Mill Circuit Specific Energies 

 
To do so the overall specific energy of an SABC circuit was compared 
with an HPGR-Ball mill circuit treating different ore hardnesses.  In this 
case ore hardness was described using a range of DWi values and ball 
mill work indices that varied by proportionally the same amounts.  The 
circuit feed F80 was set at 100 mm and initially a final grind P80 of 150 
microns was chosen.  Both the AG/SAG and HPGR circuits were closed 
with 12mm aperture screens.  The resultant total kWh/t predicted for both 
types of circuit is shown in Figure 11.   
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Clearly the total for the HPGR circuit is significantly lower than that for 
the AG/SAG circuit.  The difference between the two circuits is 
considered to be conservative as it was assumed that the strength of 
the material going to the ball mill in the HPGR circuit was not reduced 
due to the influence of micro-cracking.  Laboratory and pilot tests have 
indicated that reductions in the ball mill circuit specific energy when 
HPGR products are being fed do occur when compared to results when 
conventionally crushed material is used, independent of feed size 
distribution. Micro-cracking is thought to be the cause.  The effect, 
however, varies in magnitude and in some cases is not seen at all. 
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Figure 10-comparison Between AG/SAG and HPGR Circuit Product 

Size Distributions when Treating the Same Ore 
 
If the previous calculations are repeated but this time with a final grind 
P80 of 75 microns, the predicted differences between the 2 types of 
circuit diminishes (Figure 12).  This is because the proportion of the 
total circuit energy accounted for by the ball mill circuit increases as the 
final grind size decreases.  Hence the proportionate influence of the 
more efficient HPGR diminishes.  This is summarised in Figure 12 
which compares the 150 and 75 micron scenarios.  In the 150 micron 
case overall percentage savings are of the order of 20-22% and drop to 
12-14% when the grind is reduced to 75 microns.  To some extent the 
magnitude of this effect can be reduced by making the HPGR circuit do 
more of the size reduction work.  The easiest way to do this is to reduce 
the aperture of the HPGR closing screen as illustrated in Figure 14. 

 
CONCLUSIONS 

 
Data from a range of laboratory and pilot tests indicate that the DWi is 
strongly correlated with the operating work index of the HPGR circuit.   
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No such relationship was found when using the Bond ball mill work 
index.  Using the correlation between the DWi and the HPGR circuit 
operating work index a number of scenarios were studied in which the 
HPGR-ball mill circuit specific energy was compared with that from an 
SABC circuit treating the same ore.  The results indicated that with a final 
grind P80 of 150 microns the HPGR circuit would use at least 20% less 
energy than the SABC circuit.  If the final grind was reduced to 75 
microns the HPGR circuit energy saving dropped to about 12% due to 
the increased contribution of the ball mill circuit to the total energy 
requirement.  By reducing the closing screen size of the HPGR circuit the 
ball mill power demand was reduced, thereby increasing the energy 
savings of the HPGR-ball mill circuit. 

0

5

10

15

20

25

0 2 4 6 8 10 12 14

DWi

To
ta

l k
W

h/
t  

 

HPGR
SABC

 
Figure 11 – HPGR-Ball vs AG/SAG-Ball Mill Circuits: 150 micron grind 
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Figure 12 – HPGR-Ball vs AG/SAG-Ball Mill Circuits: 75 micron grind 
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Figure 13 – Savings in Total Energy of an HPGR-Ball Mill Circuit 

Compared with a SABC Circuit 
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Figure 14 – Effect on Total Energy Requirement in an HPGR-Ball Mill 

Circuit of Changing Closing Screen Size: 75 micron grind 
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