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ABSTRACT 
 
The SMC Test is described together with the sample requirements 
necessary to carry it out.  The test is able to use very small sample 
quantities making it ideal for use with drill core.  It generates a Drop-
weight Index (DWi), which is shown to be correlated to the JK drop-
weight test parameters A and b, making it suitable for use in modelling 
and simulation.  The DWi can also be incorporated in an equation that 
predicts the specific energy and transfer size of AG/SAG circuits.  Its 
accuracy is demonstrated using data from a wide range of plants.  The 
DWi has also been found to be correlated to the point load index and 
UCS, which makes it valuable for predicting AG/SAG mill feed size as 
well as conducting Mine-to-Mill projects. It is also correlated with the 
operating work index of HPGR circuits and in conjunction with pilot 
and/or laboratory scale HPGR testwork can be used to determine 
specific energy requirements for these circuits as well. 
 

INTRODUCTION 
 
It is generally recognised that the most accurate means for predicting the 
specific energy of grinding circuits is to pilot them.  However, one of the 
major drawbacks of this approach is that a relatively large sample is 
required to do so.  Collecting such a sample is expensive and in cases 
where the deposit is at depth, not practicable.  Even if a sufficiently large  
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sample could be obtained the question still arises as to whether the 
sample is representative of the orebody as a whole.  In cases where the 
deposit is highly variable this is a particular problem.  Ideally under 
these conditions it would be valuable to obtain samples of all of the 
major ore types and pilot these independently.  However, such an 
approach would be even more prohibitive than treating a single sample. 
An alternative is to carry out laboratory rock breakage characterisation 
tests on drill core and use these results either on their own or in 
conjunction with one pilot test, which provides a baseline performance.  
The drill core data are then referenced against this result.  One of the 
big advantages of this approach is that many core samples can be 
tested and a much more detailed picture of the comminution 
characteristics of the orebody can be obtained than would be the case if 
a single bulk sample were used.  One of the potential drawbacks, 
however, is the extent to which laboratory tests are able to provide 
accurate predictions of comminution circuit performance.  An important 
question that needs to be answered, therefore, is: “What is the most 
appropriate laboratory test to conduct and how should its results be 
used?” 
 
Although drill core is much less expensive to obtain than bulk samples, 
drilling campaigns are still expensive and hence as far as possible the 
drill cores should be put to multiple uses.  This usually means halving or 
quartering it, with the result that only very small quantities may be 
available with which to carry out comminution testwork.  The laboratory 
rock breakage test must therefore be able to accommodate this 
limitation. With these problems in mind the SMC Test was developed 
together with a variety of approaches that use the results from the test 
to predict AG/SAG mill performance. 
 

TEST DESCRIPTION 
 

The test (referred to as the SMC Test) was developed to make use of 
relatively small samples, both in terms of quantity and particle size and 
to be versatile so as to make as much use as possible of whatever 
samples are available for testing.  As a result it is able to accommodate 
a wide range of particle sizes either in core or crushed form.  The test is 
applied to particles of a particular size, the size chosen depending on 
the type and quantity of sample available.  The choices of particle size 
that can be used in the SMC Test are shown in Table 1.  Sample 
sources can be from a range of core sizes as given in Table 2.  
Typically either the 31.5+26.5mm or –22.4+19mm particle sizes are 
chosen as these are easily extractable from HQ and NQ cores 
respectively, and these tend to be the most popular core sizes used.  
When sample availability is very limited, quartered (slivered) core 
samples are cut using a diamond saw (Figure 1).  This results in sample  
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mass requirements as low as 2-2.5 kgs in total.  However, where core is 
available in sufficient quantity (10-15 kgs) it can be crushed and the 
appropriate size fraction extracted eg quartered PQ core or half HQ or 
whole NQ could be crushed to extract (say) –22.4+19mm specimens 
suitable for testing etc (Figure 2). 
 

 
 

Figure 1 – Pieces Cut from a Drill Core Using a Diamond Saw 
 

 
 

Figure 2 – Pieces Obtained by Crushing Drill Core 
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Table 1 – Particle Size Ranges Typically used in an SMC Test 
 

Particle size
(mm) 
-45+37.5 
-31.5+26.5 
-22.4-19 
-16+13.2 

 
Table 2 – Core Sizes Suitable for Use in an SMC Test 

 
Core Nominal diam.

 Mm 
PQ 85 
HQ 63.5 
NQ 47.6 
BQ 36.5 
AQ 27 

 
Once the core has been cut or crushed into the chosen particle size 
range, 100 specimens are selected.  The mean specific gravity of the 
specimens is then determined then they are divided into five equal lots 
of 20 pieces. Each lot is then broken in an impact device using a range 
of closely controlled energies.  A suitable impact device is the JKMRC’s 
drop-weight tester (Napier-Munn et al, 1996), a picture of which is 
shown in Figure 3.  After breakage the products are collected and sized 
on a sieve whose aperture is related to the original particle size.  The % 
of undersize from sieving the broken products is plotted against the 
input energy.  A typical plot from a test is given in Figure 4 and shows 
the expected trend of an increasing amount of undersize as the input 
energy is increased.  The slope of this plot is related to the strength of 
the rock, a slope with a larger gradient being indicative of a weaker 
rock.  The gradient of the slope is used to generate a so-called Drop-
weight Index (DWi) which is used in a companion equation for predicting 
the specific energy of AG and SAG mills.  Estimates of the JK drop-
weight test parameters A and b are also obtainable from the test, which 
enhances its range of usefulness, allowing it to be used for modelling 
and simulation in association with the comminution circuit simulator 
JKSimMet. 
 
The high degree of control imposed on both the size of particles and the 
energies used to break them means that the SMC Test is very precise 
and is largely free of the repeatability problems which plague tumbling 
mill rock characterisation tests (Angove and Dunne (1997), Kaya 
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(2001)). Such tests usually suffer from variations in feed size, which is 
often not closely controlled, as well as energy input per revolution, which 
although is often assumed to be constant per mill revolution is often 
highly variable (Levin, 1989). 
 

 
Figure 3 – JK Drop-weight Tester 
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Figure 4 – Typical Raw Data from SMC Test 
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THE DROP-WEIGHT INDEX (DWI) 
 

The DWi has the units of kWh/m3, which in turn has the same 
dimensions as strength (eg MPa) and hence it is not surprising that the 
DWi is correlated with direct strength measurements such as the point 
load index (see later).  It is an index, however, not a direct 
measurement of strength, though in its development its magnitude was 
arranged to approximately align with the typical specific energies seen 
in SAG mills.  This is illustrated in Figures 6 and 7, which show the 
distribution of AG/SAG mill specific energies and DWi values in the 
SMCC data base and indicate they cover a similar range of values.  In 
the case of the former the data come from 37 different circuits covering 
62 different ore types.  In the case of the latter the DWi values are the 
means from over 100 different deposits that have been characterised 
using multiple SMC Tests, the total number of tests so far carried out 
being over 2500. 
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Figure 5 – Correlation Between Point Load Strength and the DWi for 35 
Different Ore Types 
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Figure 6 – Histogram of AG/SAG Mill Specific Energies 
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Figure 7 – Histogram of Mean DWi Values for Deposits in SMC Testing 

Data Base 
 
PREDICTING AG/SAG CIRCUIT SPECIFIC ENERGY USING THE Dwi 
 
The power-based approach to design uses a methodology which, given 
certain ore breakage characteristics, predicts the specific energy for a 
particular AG/SAG mill circuit.  The multiplication of the specific energy 
by the target throughput gives the required power draw of the mill.  A mill  
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is then selected which can draw the required power under the chosen 
operating conditions eg ball charge and speed.  
  
The choice of an appropriate measure of the ore breakage 
characteristics and an associated technique for predicting the specific 
energy are obviously very important for this approach to work.  The DWi 
has been found to provide a good indication of the breakage 
characteristics of ores for AG and SAG mills and when combined with 
equation 1 is able to predict the specific energy of a wide range of 
circuits with a high degree of accuracy. In the form shown, equation 1 is 
suitable for AG/SAG mills in closed circuit with trommels or screens with 
apertures typically in the 10-20 mm range.   It is combined with equation 
2, which gives the associated transfer size of the circuit.  For circuits 
where the AG/SAG mill is closed by a fine screen or cyclone, equation 1 
is used to obtain the specific energy to reach the transfer size indicated 
by equation 2 and SMCC’s comminution equation used to estimate the 
additional energy required to grind from this transfer size to the target 
grind of the fine screen/cyclone (see equation 3). In equation 3 the data 
from conventional Bond ball work index tests are used to represent the 
relevant ore properties (Mi).  It should be noted that the Bond ball work 
index itself is not used.  In stead the raw data from the Bond test are 
used to calculate an Mi value so that it is compatible with equation 3.  
The energies from the two calculations are then added together to 
obtain the total energy requirement for the AG/SAG circuit.  The 
accuracy of the equations is illustrated in Figure 8, which shows the 
observed and predicted specific energies for 37 different plants (62 
different data sets).  The range covered by these plants is given in 
Table 3.  The histogram of the DWi values for the 62 data sets is shown 
in Figure 9 and is seen to closely match the SMC Testing data base in 
Figure 7.  These data bases are quite independent, many of the data 
sets in the SMC Testing data base being associated with deposits that 
have yet to be developed, whilst the AG/SAG circuit data base covers 
deposits which are currently or have previously been treated.  The fact 
that the histograms match indicates that equation 1, which has been 
validated using the AG/SAG circuit data, should be equally applicable to 
all other deposits, at least within the indicated precision of the equation.  
This has been determined to be +/- 9% (1 sd).  
 
The predicted specific energies shown in Figure 8 were calculated using 
equation 1 in which there are no efficiency factors related to different 
circuits or mill sizes, ie the equation assumes that all mills and circuits 
have approximately the same energy efficiency.  The fact that this 
assumption is supported by a significant and varied data base has at 
least two important implications.  The first and most obvious is that as 
the assumption is supported by these data it strongly goes against the  
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practice in many quarters of applying so-called fsag factors to different 
circuits.  The second is that the data base covers mill operations ranging 
from AG milling with coarse feeds through to SAG milling with very high 
ball loads and very fine feeds.  Much is said in the literature concerning 
abrasion and crushing breakage, the differences between them and the 
importance of characterising each for accurate prediction of AG and SAG 
mill performance.  AG milling is regarded as generating conditions in 
which abrasion breakage is maximised whereas a SAG mill heavily 
loaded with balls and treating a fine feed would have the minimum 
amount of abrasion and maximum crushing breakage.  The DWi, which 
is used in equation 1 is derived from an impact test (ie no abrasion), yet 
it predicts AG and SAG milling equally well (at least to within the 
indicated precision of +/- 9%).  This suggests that from a specific energy 
and energy efficiency perspective in AG and SAG mills the differentiation 
between abrasion and crushing is not necessary. 
 
S  = K.F80

a.DWi
b.(1+c(1-e-dJ))-1. φ e.f(Ar)       (1) 

 

b
iDW

SgfT .
80 −=

          (2) 
where 
S = specific energy at the pinion 
F80 = 80% passing size of the feed 
T80 = 80% passing size of AG/SAG mill circuit 
DWi = drop-weight index 
J = volume of balls (%) 
φ = mill speed (% of critical) 
f(Ar) = function of mill aspect ratio  
a,b,c,d,e,f,g = constants 
K= function whose value is dependent upon whether a pebble crusher is 
in-circuit 
 

( ) ( )( )12
12

xfxf
i xxKMW −=                           (3)  

 
where   
W = Specific energy (kWh/tonne) 
K = Constant chosen to balance the units of the equation 
Mi = Index related to the breakage property of an ore (kWh/t) 
x2 = 80% passing size for the product 
x1 = 80% passing size for the feed 
 
The specific energy predicted from the above equations is used in 
conjunction with a model that predicts the power drawn by a mill with 
given dimensions, ball load, total load and speed (Morrell, 1996).  In a  
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design situation the throughput would be specified and hence the mill 
dimensions would be adjusted until the required power was obtained.  
Where a circuit already exists and a drilling programme is undertaken to 
determine how well future ores would be handled by the AG/SAG 
circuit, the throughput would be predicted by dividing the power draw of 
the existing mill by the predicted specific energy.  Each drill core tested 
can therefore be assigned a throughput.  Thus, in conjunction with the 
Mine’s block model, it is possible to build a detailed picture of the most 
likely future performance of the AG/SAG mill circuit as the mine is 
developed further. 
 

Table 3 – Range of Conditions Covered by Eq 1 
 

  Max Min 
A  81.3 48 
b  2.97 0.25 
A*b  241 12 
sg  4.63 2.5 
Dwi  14.2 1.7 
Bond ball Wi kWh/t 26 9.4 
F80 mm 176 19.4 
P80 microns 600 20 
Diameter m 12.02 3.94 
Length m 9.5 1.65 
ball load % 25 0 
speed % crit 90 58 
L/D (aspect) ratio  2.02 0.34 
Spec. energy kWh/t 38.6 2.2 
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Figure 8 – Observed vs Predicted Specific Energy of 46 Different Full-
scale AG/SAG Circuits Using the DW 
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Figure 9 – Histogram of DWi Values in SMCC AG/SAG Circuit Data Base 
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ESTIMATING THE JK DROP-WEIGHT TEST PARAMETERS, A and b 
 
The use of modelling and simulation has become routine in the design 
and optimisation of AG and SAG mill circuits. One of the most widely 
used models for this purpose is the so-called “variable rates” model 
(Morrell and Morrison, 1996).  A more up-to-date version has also been 
developed with enhanced predictive capabilities (Morrell, 2004).  This 
model only uses the JK A and b description of rock breakage and has 
dispensed with the abrasion breakage parameter – ta.  The result is a 
model which is able to predict throughput and product size with a high 
degree of accuracy (see Figures 10 and 11). 
 
Apart from being able to predict throughput and power draw of AG/SAG 
mills, simulation enables a detailed flowsheet to be built up of the 
comminution circuit response to changes in ore type.  It also enables 
optimisation strategies to be developed to overcome any deleterious 
changes in circuit performance that are predicted.  This is particularly 
useful during the design stage as the chosen circuit can be tested under 
a range of conditions to see whether the circuit will meet its production 
targets.  Strategies can then be developed to overcome any potential 
problems.  These can include both changes to how mills are operated 
eg ball load, speed etc but also changes to feed size 
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Figure 10 – Observed vs Predicted Throughput Using Morrell AG/SAG 
Model 
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Figure 11 – Observed vs Predicted Circuit P80 (T80) Using Morrell 
AG/SAG Model 

 
distribution through modification to blasting practices and primary 
crusher operation – so-called Mine-to-Mill approach.  Simulation 
therefore complements the DWi power-based approach and helps 
ensure the design is robust.  However, where only small diameter drill 
core (eg NQ or HQ) is available the standard JK drop-weight test 
requirement of at least 75 kgs of PQ core normally precludes its use.  
However, the SMC Test can be used to estimate the A and b values very 
accurately using limited quantities of small diameter core.  
 
The JK drop-weight test parameters, A and b, are ore specific and relate 
the t10 (the amount of fines produced in a breakage event) to the applied 
specific energy (Ecs).  The equation used by JKTech for describing the 
relationship between the t10 and Ecs is given in equation 4. 
     
T10 = A ( 1 – e –b.Ecs )      (4) 
 
The specific comminution energy (Ecs) has the units kWh/t and is the 
energy applied during impact breakage.  As the impact energy is varied, 
so does the t10.   Higher impact energies produce higher values of t10, 
which is reflected in products with finer size distributions. The A and b 
parameters, in conjunction with equation 4, are used in AG/SAG mill 
modelling for predicting how rocks break inside the mill.  From this 
description the model can predict what the throughput, and product size 
distribution will be.  The values of A and b are determined by fitting 
equation 1 to the results of a drop-weight test.  The test itself breaks 
rocks from 5 different size fractions, each size fraction being  
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broken using a range of specific energies.  The products from breakage 
of each combination of particle size and energy are sized and the t10 
determined. Each size fraction is broken using three energy levels 
which generate a total of 15 data pairs of Ecs and t10.  The raw results 
from a typical test are shown in Figure 12.   
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Figure 12 – Raw Data from a JK Drop-weight Test 
 

The scatter in the data is obvious and is not due to poor experimental 
technique but the result of an underlying particle size dependence.  This 
becomes evident when the data are viewed with their particle size 
labels as in Figure 13.  What is apparent from these data is that each 
particle size has a different relationship between t10 and Ecs and is a 
natural consequence of the fact that as size decreases particle strength 
increases.  The fitted curve of the JK t10-Ecs equation (4) is also shown 
in Figure 13, the resultant values of A and b being 70 and 0.62 
respectively.  Given the size dependence inherent in the data, the single 
value for A and the single value for b that are obtained from a drop-
weight test therefore relate to the effective average size of the range of 
particle sizes tested.  This tends to be about 31 mm as seen in Figure 
14.  These data were derived from the analysis of over 60 drop-weight 
test results and show the mean and extremes of the relationship 
between A*b (normalised so that results from different rock types can 
be easily compared) and the particle size ranges tested in the drop-
weight tests.  The product A*b is widely regarded as being related to the 
softness of the rock and hence higher values indicate a softer rock and  
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conversely lower values relate to harder rocks.  The plots therefore 
reflect the aforementioned natural relationship of increased strength as 
particle size decreases.  This relationship is not the same for all rocks, 
though of the 60-plus drop-weight tests so far analysed, 90% fall within a 
very narrow envelope whose limits are +/- 10% about a mean 
relationship.   
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Figure 13 – Raw Data from a JK Drop-weight Test with Fitted A,b Curve 
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Figure 14 – Size Dependence of Normalised A*b Values 
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The particle size dependence of A*b and the similarity of this 
dependence over a very wide range of rock types is utilised in the SMC 
Test.  The SMC Test targets a particular size fraction which is very 
closely sized to ensure each particle tested is very similar in size and 
hence mass.  The particles are broken using 5 energy levels and the 
results are used to generate a set of t10-Ecs values. The raw results 
from an SMC Test on the same ore as shown in Figure 13 are plotted in 
Figure 15 together with the associated drop-weight test results.  The 
SMC Test targeted a particle size of 19mm and so the results can be 
seen to be very near to those in the drop-weight test for 20.6mm 
particles.  The SMC Test raw data are then adjusted using a proprietary 
correlation and the equivalent drop-weight test A and b values are then 
determined.  In this example the resultant A and b values from the SMC 
Test were 69.5 and 0.65 respectively and closely match the values 
determined from the full drop weight test (70 and 0.62). 
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Figure 15 – SMC Test Raw Results vs Raw Drop-weight Test Results 

 
The “Standard” SMC Test – DWT correlations vary with the particle 
sizes used for the SMC Test and have been developed using data from 
over 60 different ore types. The precision of these correlations varies 
with the particle size chosen for the test, the best results coming from 
the use of particles closest to the mean size of the drop-weight test.  
This is illustrated in Figure 16, which gives the variation in precision as 
the SMC Test particle size is changed, the minimum of 6.1% occurring 
at about 31mm.  Hence if an SMC Test is carried out on 31mm particles 
and the “Standard” correlation is used, the estimated JK A*b value will  
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be accurate to within 10% at the 90% confidence level (ie 1.64 x 6.1% = 
10%).  This is identical to the typical 10% accuracy of a full drop-weight 
test, which in part is a result of scatter in the raw data such as shown in 
Figure 13 and which makes the precise fitting of a single curve very 
difficult, ie it is difficult to determine what the “true” values are due to data 
scatter. 
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Figure 16 – Variation in SMC Test Precision with Particle Size 

 
OTHER USES OF THE SMC TEST and DWi 

 
Mine-to-mill 
 
The feed size to AG and SAG mill circuits has been demonstrated to 
have a significant impact on throughput.  Modifying blast design and 
primary crusher operation can significantly influence AG/SAG mill feed 
size, hence giving a potentially cost effective way to increase 
comminution circuit throughput.  Trial and error experimentation in this 
field, however, can be very costly and thus it is usual to rely on blast 
fragmentation modelling and grinding circuit simulations to determine 
what the optimum blast design should be.  This will vary with ore type 
and hence it is important not only to have appropriate blast models but 
also rock breakage descriptions. Blasting models require information on 
rock mass competence such as provided by the point load strength 
(Scott et al, 2002).  The DWi is correlated with the point load strength 
(Figure 5) and hence can also be used in blast fragmentation modelling 
where direct measurements of point load strength are not available.  
Conversely, where a significant data base of point-load tests is available 
these can be used to augment the comminution description of the 
orebody by using the correlation in Figure 5 in reverse. 
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High Pressure Grinding Rolls 
 
Although HPGR technology has become commonplace in the cement 
and diamond mining industries and of late has been making significant 
inroads in the processing of iron ore, it is only recently beginning  to 
make an impact in the gold, platinum and base metals sectors.  Interest 
in the technology is now such that general expectations are that rapidly 
increasing numbers of HPGR machines are soon likely to find their way 
into these sectors.  Due to the way HPGRs operate, the more 
established techniques for breakage characterisation that have been 
developed with tumbling mills in mind, are not applicable for HPGRs.  
Simulation has helped in this regard, JKSimMet containing a model that 
has been shown to have good scale-up capabilities (Morrell et al,1997, 
Daniel and Morrell, 2004).  This model needs HPGR data to calibrate it, 
and although it has been shown that laboratory-scale HPGR results are 
suitable, separate tests need to be conducted on every different ore 
type, as the size reduction and throughput parameters of the model are 
ore dependent.  The DWi, at least in part, can bridge this gap as it has 
been found to be correlated with the operating work index of HPGR’s as 
Figure 17 indicates.  The data in this figure have been obtained from 20 
different ore types.  It is valid for machines operating with a working 
pressure in the range 2.5-3 N/mm2.   
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Figure 17 – Relationship Between the DWi and the Operating Work 
Index of HPGR Machines 
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CONCLUSIONS 
 
The SMC Test for rock breakage characterisation has been developed to 
make use of very small quantities of sample, such as quartered drill core.  
The test generates a strength index (DWi) which, via modelling and/or 
power-based techniques, can be used to predict the specific energy of 
AG and SAG mills.  Its applicability for modelling stems from its 
correlation with the JK rock breakage parameters (A and b).  For power-
based calculations an equation has been developed which relates it and 
operating variables such as feed size, ball load and speed to AG/SAG 
mill specific energy. 
 
The usefulness of the DWi also extends to rock mass characterisation in 
mining applications, as it is correlated with the point load index/UCS.  It 
is therefore ideally suited for mine-to-mill studies as it can be 
simultaneously used as an input to both comminution circuit and blast 
fragmentation models, where independent point load/UCS 
measurements are not available. 
 
HPGR operating work indices have also been found to be strongly 
related to the DWi making it a valuable tool for orebody profiling not only 
for AG/SAG mill circuits but HPGR ones as well. 
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