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ABSTRACT 
 
Arguably the JKMRC’s “Variable Rates” ag/sag model is the only one 
that is widely used in the mineral’s processing industry for design, pilot 
mill scale-up and optimisation.  Despite its success it is being continually 
tested against real plant data and improved through a number of 
research programmes.  The latest of these programs has targeted the 
ore breakage and slurry transport descriptions of the model as well as 
the influence of load level on throughput and grind size.   

 
In a parallel programme the dynamic response of ag/sag mills has also 
been tackled which has lead to the development of a dynamic model.  
This phenomenological model has attempted to describe the operation of 
these mills in a physically lifelike manner.  Over the last 2 years this 
model has been tested on-line at a number of operations to determine 
how well it mimics real plant performance.   

 
This paper describes describes these programmes and the latest results 
from them. 
 

INTRODUCTION 
 
The so-called “Variable Rates” model has proven to be a reliable model 
for both design and optimization studies.  However, it was recognized 
that room for improvement existed in each of its 3 key sub-process 
descriptions viz: 
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• Slurry transport 
• Breakage rate relationships 
• Rock breakage characterization 

Research programmes were therefore mounted to tackle the identified 
deficiencies in each of these areas.  At the same time the need for a 
dynamic model of ag and sag mills was also recognized and in a 
parallel study such a model was developed.  In the following sections 
progress in each of these programmes is described. 
 

SLURRY TRANSPORT 
 
The only literature available on flow through AG/SAG mills is by Moys 
(1986) and Morrell & Stephenson (1996) who developed models for 
grate-only discharge assemblies. Both were based on limited data and 
included only a few variables. The influence of charge volume and pulp 
lifter specifications, which play a critical role in slurry transport, were not 
explicitly incorporated in either model. An experimental and modelling 
program was therefore undertaken to describe the influence of pulp 
lifters in slurry transport. 
 
Laboratory/Pilot Data 
 
Laboratory and pilot programmes were initially conducted and 
determined that the equation form suggested by Morrell and 
Stephenson was appropriate to describe the resultant data.  It was 
found that slurry hold-up ( H p ) was dependent on the open area (OA), 
grate design (GD), mill speed (CS), flowrate (Q), charge volume (CV) 
and pulp lifter specifications such as size (PLS), and design (PLD).  
This can be expressed mathematically as: 
 
Hp = k(GD)a(OA)b(CV)c(CS)dQe   (1) 
 
where,   
H p  =  the net fractional slurry hold-up inside the mill  
OA   =   fractional open area  
CV   =  fractional charge volume 
CS   =   fraction of critical speed  
Q  =   flowrate (m3 hr-1). 
GD   =    grate design in terms of mean relative radial position of 

the grate holes 
k   =   coefficient of resistance  
 a,b,c,d,e =   model parameters 
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The value of ‘GD’ is a weighted radius position which is expressed as a 
fraction of the mill radius and is calculated using the formula proposed by 
Morrell & Stevenson (1996). 
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where,  
ai   =  open area of all holes at a radial position ri  
rm    =  radius of mill inside the liners 
The parameter values b,c,d and k were found to be functions of pulp lifter 
design and size and were fitted to experimental data using the equation 
form: 
 
x = xg – kxe(-PLS) 
where, 
xg = parameter value for grate-only condition 
kx = constant for a given pulp lifter design (eg spiral or radial) 
  
Using data from the 760 laboratory and pilot scale date sets which were 
generated in the programme, equation 1 was fitted.  The results shown in 
Figures 1and 2 were obtained. 
 
Full Scale Data 
To validate the model equations flowrate and hold-up data from a 
number of industrial circuits were collected. A total of 21 data sets were 
obtained. Initially the data from the industrial mills were compared with 
model predictions using the value of k that was derived from the lab/pilot 
data.  It was found that the model trended well but was offset.  This was 
attributed to the fact that the lab/pilot data was for water whilst the 
industrial data was related to slurry with much higher viscosities.  The 
parameter k was therefore fitted to the industrial data.  Accordingly its 
mean value was found to increase from 0.04 to 0.053. Using this latter 
value the observed and predicted results shown in Figure 3 were 
obtained.  It can be seen that results indicate good correlation though 
there is a degree of scatter.  Thjs is due to the (incorrect) assumption, 
implicit in using a constant k, that all slurries have identical viscous 
properties.  Also the experiment data on mill hold-up were very difficult to 
obtain and necessitated using a number of assumptions.  These 
undoubtedly resulted in some measurement errors.  
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Figure 1: Observed vs. Fitted Hold-up- Grate-only Conditions 
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Figure 2: Observed vs. Fitted Hold-up- Grate/Pulp Lifter Conditions 

 

0.0 

0.1 

0.2 

0.3 

0.0 0.1 0.2 0.3 

Observed fractional hold -up 

Pr
ed

ic
te

d 
fr

ac
tio

na
l h

ol
d

-u
p 

 
Figure 3: Observed vs. Predicted Slurry Hold-up for Industrial Mills 
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BREAKAGE RATES 
 
The current JKMRC model uses the population balance approach for its 
framework, which results in a throughput response driven by the 
following first-order rate relationship: 
 

T/hr α r.s.(1-a)    (2) 
   
r = breakage rate  
s = rock load mass 
a = appearance function  
 

The variable rates model has a number of empirical equations which 
relate the breakage rate to operating conditions such as ball load, ball 
size and mill speed.  However it is independent of the rock load mass 
and hence the load volume.  For a given feed, mill diameter, mill speed, 
ball diameter and ball load the appearance function (a) is constant as is 
the breakage rate (r).  Therefore, under these conditions the model 
predicts that throughput is linearly related to the load mass (s). 
 
However, from pilot data and from an increasing number of full scale 
mills it has become evident that for normal primary crushed feeds 
throughput does not increase linearly with load mass nor is its maximum 
necessarily coincident with the load level at which power reaches a 
maximum ie 45-50%.  Typically the load level that maximises throughput 
falls in the range 20-40% depending on the competence of the ore, 
whether the circuit is run in open or closed circuit and what the ball 
charge level is. 
 
Hypotheses on the Cause of the Relationship 
 
The reasons for the observed load-throughput relationship are not clear 
and at this stage it can only be surmised as to the physics describing the 
phenomenon.  It has been postulated that the variation in height from 
which the grinding media drop onto the rock charge drives the effect (this 
is directly related to the energy used to break rocks).  This has some 
merit as charge motion studies indicate that the drop height typically 
reaches a maximum with a load volume of 25%.  However the 
relationship is very flat ie the change in drop height and hence energy is 
quite small.  With reference to equation 2 the breakage energy is related 
to the appearance function (a).  As a result the term (1-a) reduces as the 
energy reduces.  For the drop height variation to result in the throughput 
decreasing above about 25% volume, the reduction in the magnitude of 
(1-a) must be quite large as the load mass term (s) will also be 
increasing as the volume increases. 

IV-76 
 
Calculations indicate that the drop height variation on its own cannot 
account for the load-throughput relationship. 
 
As a hypothesis based on input energy could not explain the 
relationship it was also decided to look at how the energy might be 
being absorbed and hence utilized by the load for breakage.  Out of this 
came the following hypotheses to describe the causes for load-
throughput relationship: 
 
• Impact energy is related to the drop height. 
• Impact breakage occurs in a bed at the toe of the charge. 
• The thicker the bed the more the original impact energy is 

dissipated throughout the bed and is hence attenuated – less 
breakage will occur. 

• The ability of the bed to transmit the impact energy to a target rock 
without attenuation depends upon the bed composition.  If the bed 
contains steel balls the bed will be a better transmitter and will 
attenuate the impact energy less – more breakage will occur. 

• Impact breakage is responsible for breaking down the coarser rocks 
and hence drives the reduction/accumulation of the load. 

• Attrition breakage occurs within the shearing layers of balls and 
rocks in the bulk of the charge. 

• More attrition will occur as the volume of the charge increases 
• Attrition breakage influences the breakage of finer particles only. 
 
To test out these hypotheses it was necessary to obtain a relationship 
between the thickness of the bed at the toe of the charge and the 
volume occupied by the total charge.  To do so the Morrell power model 
(1996) was used as it has a relationship for the charge thickness as well 
as the drop height.  Figure 1 shows the simplified charge shape used in 
this 

 

r m

r i

θ

90

270

θ s

θ T

h θ

θs

θT

θTO

slurry pool

90

270

h1

h2

 
Figure 4: Charge Shape Used in the Morrell Power Model 
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The drop height was calculated from the equations describing the 
position of the toe and shoulder.  This was then normalized with respect 
to the mill diameter.  The bed thickness was calculated from the 
difference between the mill radius and the so-called charge inner surface 
radius (ri) and was normalised with respect to the mill radius.  To 
describe the composition of the charge in terms of its ability to absorb 
energy and use it for breakage an energy utilization factor was calculated 
based on the ball:rock ratio.  The above relationships were then 
combined to give a load adjustment factor that was applied to the 
breakage rate distribution. 
 
The effect of this adjustment factor is seen in Figure 5.  High loads give 
rise to a drop in the breakage rates at coarser sizes and a simultaneous 
increase in the rates at finer sizes 
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Figure 5:  Effect of Load Volume on the Breakage Rate Distribution 

 
Model Response 
 
To determine whether the model gave reasonable results a hypothetical 
ag/sag mill circuit was constructed and run under simulated conditions of 
varying load volume, ball charge, closing screen size and ore hardness.  
The resultant load:throughput relationship is shown in Figure 6.  It can be 
seen that the model predicts different responses for each scenario.  It 
suggests that peak throughput occurs at a higher load if the mill is close-
circuited with a fine classifier.  It also indicates that a harder ore should 
be run with a lower  
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load if peak throughput is required.  Both these trends have been 
observed in practice.   
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Figure 6: Simulated Load-Throughput Response 

 
 

ROCK BREAKAGE CHARACTERISATION 
 

The thrust in the rock breakage characterisation work has been in 
describing the relationship between the size of a rock and its breakage 
characteristics as well as its response when it is exposed to energies 
that are not big enough to fracture.  Such low energies, although not 
sufficient to break the rock, result in chipping or abrading away the rock 
surface. 
 
Dependence of Impact Breakage Characteristics on Rock Size   
 
Earlier studies of rock breakage at the JKMRC using a limited range of 
energies and rock sizes concluded that, for a constant input of specific 
energy, rock breakage characteristics were largely independent of rock 
size.  Such a response would give rise to the results shown in Figure 7, 
which shows the relationship between the t10 parameter (Narayanan 
and Whiten, 1988) and specific energy.   More extensive studies using a 
much wider energy and rock size range have indicated that it is more 
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usual to see a breakage characterization pattern related to rock size.  In 
these cases results similar to those shown in Figure 8 are encountered. 
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Figure 8:  Rock Breakage Characteristics with Significant 
Dependence On Rock Size 

 
The data in Figure 8 are indicative of a material whose strength 
increases with decreasing rock size.  To confirm this a Hopkinson Bar 
was used to accurately measure the specific energy required to drive the 
first fracture through each rock in a range of rock sizes.  The results are 
shown in Figure 9.  They clearly show that rock strength increases with 
decreasing size.  This size dependence was modelled using the 
following equation: 
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where: 
t10 = % passing one tenth the size of the original particle 
S = particle diameter 
βm = shape of the t10-Ecs curve 
α = strength parameter 
From testing a wide range of rock types equation 3 was evaluated and 
found to give a good representation of breakage characteristics as 
shown in Figure10. 
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Figure 9: Energy at First Fracture vs. Rock Size 

 

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70

Mt Coot-tha Basalt
Newcrest Gold ore
Mt Isa HG Copper ore
Mt Isa LG Copper ore
Mt Isa Pb/Zn ore 1
Mt Isa Pb/Zn ore 2

Fi
tte

d 
t 10

 (%
)

Observed t
10

 (%)
 

Figure 10: Observed vs. Predicted t10 
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Abrasion and Chipping 
 
The different nature of abrasion and chipping to impact breakage lead 
the research programme to take a slightly different approach in 
describing its breakage characteristics.  Rather that look at the entire 
distribution after the application of the breakage energy it was decided to 
consider only the mass broken off the rock surface and its size 
distribution.  This mass was normalized wrt to the original rock mass to 
give a “mass fraction”. 
 
In view of the fact that abrasion and chipping is a surface phenomenon it 
wa considereds not relevant to relate the mass fraction to mass specific 
comminution energy. Using this would imply a volumetric breakage 
mechanism as in crushing. Hence in choosing a model, the effect of the 
surface area of the rock was considered. The value of this approach is 
illustrated in Figure 11.  
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Figure 11: Mass Fraction Produced Versus Surface Area Specific 
Comminution Energy. 

Figure 11 shows the mass fraction produced versus surface area specific 
comminution energy.  This linear plot contains data from a range of rock 
sizes and hence is easily described mathematically.   
 
On examination of the size distributions of the broken products it was 
found that they were largely self-similar and for a given rock type could 
be described by a single master curve as seen in Figure 12.  In this case 
the distributions were normalised with respect to the 50% passing size 
(d50). 
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Chipping/Abrasion Products 

 
DYNAMIC MODELLING 

 
In a parallel programme to the research described in earlier sections a 
dynamic model was developed.  A population balance model structure 
lies at its heart. The computer-based algorithm outlined in schematic 
form in Figure 13 illustrates how it operates.  For every revolution of the 
mill a small time interval ( ∆t ) is used to make incremental changes in 
the load as dictated by the quantity of new feed entering the mill and 
ground product leaving. Breakage and discharge are described using 
equations similar to those in the steady-state model.  However, an 
additional refinement is that the breakage rates are determined from the 
mill load size distribution providing a more interactive response.  To 
calibrate the model only a steady-state survey is required to fit its 
breakage rate parameters.  The model is then subsequently able to 
reproduce the dynamic response of the mill due to its 
mechanistic/phenomenological structure.  The model has been trialed at 
a number of sites using on-line data.  Required on-line inputs are 
feedrate, water addition, mill speed and feed size distribution.  The latter 
is particularly important and can be provided by a good image analysis 
system.  Although the model shows all of the responses normally 
observed in practice, even small inaccuracies in its operation, combined 
with imprecision in the on-line inputs and lack of information on feed 
hardness variation, results in the model progressively diverging from 
observed trends over time.  To correct this an adaptation routine using a 
Kalman filter is required.  By utilising such a routine the model is 
continually “tuned” using on line data.  As a result the model is able to 
closely mimic the true performance of the mill.  Figure 14 illustrates how 
closely the model is able to do this.  The data shown (power  
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draw and load mass) are from a large diameter sag mill in closed circuit 
with a pebble crusher. 
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Figure 13: Dynamic Model Algorithm 
 

 
CONCLUSIONS 

 
 
Over the last 5 years ag/sag mill research at the JKMRC has 
concentrated on improving the description of the main sub-processes 
that combine to describe the overall performance of these mills.  
Programmes have therefore been carried out to better describe: 
 

• the role of the pulp lifters and the influence of their size and 
design on slurry hold up 

• the relationship between rock strength and rock size 

IV-84 
 

• the characteristics of size reduction through low energy 
abrasion and chipping 

• the interaction between load level and throughput 
 
In addition a dynamic model has been developed with a life-like 
structure that is proving to be able to accurately mimic on-line response 
of ag/sag mills. 
 
 

 
 

Figure 14: Dynamic Model Response vs. Observed 
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