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ABSTRACT 
 
   The first 90 years of the last century generated a considerable volume of technical literature on 
the subject of grinding mill power and its prediction.  It is therefore surprising that during this time 
there were no published models for predicting grinding mill power draw which were validated using 
a wide range of comprehensive industrial scale data. 
    Notwithstanding this lack of data, the majority of models placed limited emphasis on the internal 
dynamics of mills and relied on simple assumptions which considered the charge to take up a fixed 
position and shape.   
    Laboratory based studies (Liddell, 1986) and industrial data (Morrell, 1993) showed that these 
assumptions did not hold over a wide range of operating conditions, and brought into doubt the 
ability of the (then) existing models to accurately predict grinding mill power draw. Furthermore no 
model treated AG,SAG and ball mills as a single class of devices whose power draw could be 
predicted with the same equations.  
    Through a detailed investigation of the charge dynamics, coupled with a large data base of 
industrial mill power draws this situation was rectified by the end of the century by which time a 
model had been developed and validated which accurately predicted the power draw of all wet 
tumbling mills.  This paper describes this model and reviews some of the earlier attempts at mill 
power modelling.  
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INTRODUCTION 
 
    The early 1900’s saw the beginnings of published papers which tackled the problem of what 
influenced the power draw of tumbling mills and what equations (models) were suitable for 
predicting power draw.  This interest continued for the rest of the 20th century and the literature 
contains many papers that attempted to satisfactorily answer these questions.  A common and 
disappointing theme in the majority of them, however, is the distinct lack of suitable experimentally 
derived power draw data.  This deficiency consequently limited the practical application of many of 
the attempts at modelling mill power draw.  Prior to the early 1990’s some limited data on the 
power draw of grinding mills in the literature can be found, but as Harris et al (1985) remarked they 
are “... too frequently unusable simply because one or more essential variables have been 
omitted”.  The absence of published results from vigorous experimental testing of the various 
models has resulted in a general lack of evaluation of the validity of assumptions and hypotheses 
that such models contain.  Harris et al (1985) however, did make some efforts in attempting to 
evaluate the performance of various power prediction equations and in so doing further developed 
a semi-empirical one of their own.  However, in using manufacturers’ published data, which 
themselves were undoubtedly generated by proprietary equations of unproven validity, they most 
likely succeeded in generating little more than a consensus of the various errors in these models.   
    Notwithstanding this lack of quality data, the majority of models placed limited emphasis on the 
internal dynamics of mills and relied on simple assumptions which considered the charge to take 
up a fixed position and shape.  As early as 1986 (Liddell, 1986) showed that these assumptions did 
not hold over a wide range of operating conditions, and brought into doubt the ability of the (then) 



existing models to accurately predict grinding mill power draw.  This conclusion was supported by 
Morrell (1993) who evaluated a number of models using a large data base of power draws (Figure 
1). 
    In this paper the factors which need to be addressed in order that tumbling mill power draw can 
be accurately predicted are discussed.  A power model that incorporates each of these factors is 
described and its ability to predict power draw accurately is demonstrated. 
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Figure 1 – Observed vs Predicted Power Draws 
 
HISTORICAL PERSPECTIVE 
 
    Before discussing the factors which need to be included in a suitable tumbling mill power model 
it is worthwhile looking at the way in which this subject has been approached by previous 
researchers.  It is not possible to cover all of the literature on the subject in this paper and so a 
brief summary has been compiled in tabular format which chronologically lists the more significant 
developments in grinding mill power modelling in the 20th century. Two criteria were used to 
compile the table, viz: 

• does the development approach the problem in a different manner? 
• does the development relate to a particular area of grinding mill power prediction not 

previously covered? 
The result is a list of 12 pieces of work 
 
Table 1 -  Summary of Principal Developments in Grinding Mill Power Modelling in the 20th Century 
 
Date Author Development 

1919 Davis On the basis of a theoretical treatment of the motion of 
particles in a mill under the influence of gravity and 
centrifugal force, a mill power equation was developed 
which predicted the power draw at the 'optimum speed'.  
This speed was defined as that which maximized the 
impact velocities of particles.  There is some discussion as 
to whether Davis was in fact the first to look at power draw 
in this way as White (1905) also adopted a similar 
description of particle motion in his work on tube mills. 



1956 Rose and Evans  Using an instrumented drive mechanism, the effect of a 
wide range of design and operating variables was 
determined experimentally using mills with diameters less 
than 3 inches.  A power draw equation was subsequently 
developed based on dimensional analysis.  They applied 
these models to Taggart's data.  The model gave the same 
trends as observed in Taggarts data but with a fair degree 
of scatter. 

1961/62 Bond Developed a semi-empirical ball mill equation using 
industrial data (unpublished) and laboratory-based 
experiments (unpublished). 

1972 Hogg and  

Fuerstenau 

Used a simplified description of the charge shape in which 
it was assumed that there existed an equilibrium surface 
defined by the chord joining the toe and shoulder; the 
angle of repose of the charge was assumed constant over 
all conditions.  On the basis of this description they 
developed a power equation by considering the rate at 
which potential energy was imparted to the particles in 
such a charge. 

1982 Arbiter and 
Harris 

Used the same charge assumptions as Hogg and 
Fuerstenau and developed a power equation based on 
torque-arm principles.  The resultant equation was 
essentially identical to Hogg and Fuerstenau's.  The 
equation was fitted to Taggart's data to enable the mean 
angle of repose of the charge to be determined.  No results 
were provided on how the model fitted these data. 

1985 Harris, Schnock 
and Arbiter 

Developed 'correlation equations' whose parameters were 
determined on the basis of equipment suppliers’ models 
and data.  Their equation was a generalised form whose 
structure reflected the equations of Bond, Hogg and 
Fuerstenau and their earlier equation from 1982.  A major 
conclusion of this work was that there existed a lack of 
reliable published data that could be used to verify/develop 
accurate mill power equations. 

1986 Liddell Conducted experiments using a 0.55 x 0.3m laboratory mill 
to determine the change in shape of the charge inside a 
mill under a range of mill fillings, speeds and slurry 
rheologies.  From torque measurements of this mill he also 
related power draw to these conditions.  From the results 
of these experiments he concluded that the equations of 
Bond, Hogg and Fuerstenau, and Harris and Arbiter did not 
adequately reflect the observed power draw of his mill over 
the full range of speeds he used.  He subsequently 
modified Harris et al's equation and incorporated a 
tabulated speed correction function that matched his 
observations of the effect of speed on power draw.  The 
model was not applied to industrial data. 



1990 Fuerstenau, 
Kapur and 
Velamakani 

Considered that the charge in a mill comprised 2 parts, viz. 
a cataracting fraction and a cascading fraction.  The 
cascading fraction was assumed to be adequately 
described by the Hogg and Fuerstenau equation.  The 
cataracting fraction was assumed to be subject to viscous 
forces and was described separately using a torque-arm 
based equation.  The relative magnitude of the cataracting 
fraction was related to slurry viscosity.  The model 
contained at least 6 parameters that were fitted to batch 
laboratory ball mill data.  The model was not applied to 
industrial data. 

1990 Moys Also assumed that the charge comprised 2 parts, viz. a 
centrifuging layer and a non-centrifuging fraction.  The non-
centrifuging fraction was assumed to behave in a manner 
which Bond's equation, without its speed correction 
function, adequately described.  The centrifuging fraction 
was assumed to be affected by lifter configuration/design 
and slurry viscosity, such that it would tend to centrifuge in 
advance of the remainder of the charge as the mill speed 
increased.  The relative magnitude of this fraction was 
modelled empirically.  The parameters of the model were 
fitted to data from a 0.55 x 0.3m laboratory mill.  The model 
was not applied to industrial data. 

1990 Austin Developed a model specifically for predicting the power 
draw of SAG mills.  Hogg and Fuerstenau's equation was 
used as a basis for the model.  It was modified by Austin to 
incorporate the energy used to provide kinetic energy to 
the charge plus the power consumed by the charge in the 
conical ends of the mill (where fitted).  To account for the 
reduction in mill power observed beyond a certain speed 
he added Bond's empirical speed correction factor.  Finally 
he modified the density term in the equation to reflect the 
ball/rock/slurry mix in SAG mills.  He fitted his model to 
published data on 2 industrial mills. 

1990 Mishra and 
Rajamani 

Used discrete element methods to describe the motion of 
balls in a ball mill.  The code was modified to provide the 
theoretical mill torque based on the shear forces exerted 
on the mill shell.  They used the data from Liddell and 
Moys' 0.55 x 0.3m mill to validate their model.  The model 
was not applied to industrial data. 

1996 Morrell Developed a model applicable to ball, AG and SAG mills.  
The model related the movement of the charge and its 
shape to the mill filling and speed.  Power draw of the 
cylindrical and conical ends was described, as was the 
power lost in the electrical and mechanical drive train.  
Data were collected from over 75 industrial mills to validate 
the model.  All of the data were published.  

 
POWER DRAW EQUATIONS 
 
    In the past many researchers have assumed that the charge takes up a shape and position as 
shown in Figure 2 that is largely invariant and which contains particles which move in a locked 
manner.  Equations based on a torque-arm or a potential energy approach were then developed.  
It has been shown (Morrell, 1993) that both of these approaches yield identical equations, as does 



a third one, which considers friction forces.  The problem with the resultant equations when they 
are based on a conceptual view of the charge as shown in Figure 2 is not that the physics applied 
is incorrect but that the conceptual view and assumptions about how the media move are 
inaccurate. 
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Figure 2 – “Classical” Conceptual View of the Charge 

 
    A different conceptual view has been taken by the author and is based on observations of the 
charge as it moved inside a glass-ended mill.  A typical view is shown in Figure 3a.  Figure 3b 
shows the simplification used by the author (outlined in pale blue) for the purposes of power draw 
modelling.  This is based on the assertion that it is only the fraction of the charge that is not in free-
fall and not stationary that directly influences the power draw and that the crescent-shape shown in 
Figure 3b is a reasonable approximation of this material. 
    Using an energy balance approach, where power is taken to be the rate at which potential and 
kinetic energy is imparted to the charge, the following equation is obtained for a cylindrical vessel: 
 

Pnet-cylinder = Lρc  ⌡⌠
ri

rm
   ⌡⌠

θT

θS
    (Vr (rg cosθ + Vr2)) dθ dr     (1) 

 
where  L = mill length 
 ρc   = charge density 
 r = radial position 
 rm = mill radius 
 ri = radial position of the charge inner surface 
 θS = angular position of the shoulder and a principal function of the shell speed 

and charge volume 
 θT = angular position of the toe and a principal function of the shell speed and 

charge volume 
 Vr = tangential velocity at radial position r and a principal function of the shell 

speed and charge volume 
 
 



  

 
Figure 3a – Picture of the charge   Figure 3b – Simplified charge shape  

in a 300mm diameter mill    outlined in blue  
 

FACTORS INFLUENCING POWER DRAW 
 

Equation 1 contains a number of variables, some of which are themselves complex functions of 
other variables.  These are discussed below. 
 
Shell speed - this will affect the rate at which energy is imparted to the charge as well as the 
position of the toe and shoulder. 
 
Mill filling - changes in filling will change the mass of charge which has to be moved by the mill.  
The position of the toe and shoulder will also vary. 
 
Charge density - due to differences in density of different ores and the much higher density of steel 
balls, AG, SAG and ball mills will have different charge densities.  The slurry density and how 
much of the voidage in the charge is occupied by slurry will also influence the charge density.  To 
accurately determine the charge density the volume of rocks, balls and slurry must be know 
together with their densities.  Also necessary is the voidage (also referred to as porosity) in the 
ball/rock charge as this dictates how much of the charge volume is occupied by slurry/air.  In the 
literature it is often assumed that the voidage is 40% of the volume occupied by the charge.  This is 
reasonable in a static charge but is questionable for a dynamic charge.  Experiments conducted by 
Latchireddi (2001) showed that the dynamic voidage is much higher (typically in the range 45-55%) 
and is a strong function of charge volume and to a lesser extent shell speed (Figure 4). 
 
Slurry level – this influences the charge density, which will increase as the slurry level increases.  It 
also has a more direct impact on the power draw when the slurry level is such that it creates a 
slurry pool at the toe of the charge.  Obvious cases where this occurs is in overflow ball mills.  It 
may also occur in grate discharge mills where the flowrate of slurry is relatively high for the 
capacity of the discharge system. Schematically a mill which has a slurry pool (includes overflow 
ball mills) is shown in Figure 5 and is contrasted with a grate discharge mill in which a slurry pool 
has not formed.  The effect of the slurry pool is to reduce power draw.  This is intuitively seen in 
Figure 5 with reference to the grey-shaded section of the slurry pool.  Due to its position on the 
“downward-rotating” side of the mill it helps rotation and therefore will reduce power draw.  This 
behavior is responsible for the lower power draw seen in overflow ball mills when compared to 
grate mills of the same size, ball charge and speed.   
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Figure 4 - Relationship Between Dynamic Voidage, Charge Volume and Shell Speed 
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Figure 5 - Schematic of the charges In Grate and Overflow Mills 

 
    Figure 5 shows cases of no slurry pool and a well-established slurry pool condition.  Where no 
slurry pool exists the voidage of the charge may only be partly occupied by slurry, this being 
dictated by the prevailing slurry flow rate.  As the flowrate increases the slurry level and therefore 
the proportion of voidage occupied by slurry will increase.  Experiments carried out by Latchireddi 
showed that a progressive occupation of voids in the charge occurs from the shoulder towards the 
toe.  Eventually, when all of the voids are occupied slurry then accumulates at the toe as a pool.  
This is illustrated schematically in Figure 6.  From a power draw viewpoint this result indicates that 
the charge density, as influenced by slurry, is not necessarily uniform throughout the charge.  
Equation 1 therefore cannot be applied to the charge en-masse but must be applied to the slurry 
portion of the charge independently.  The power draw associated with the slurry can then be added 
to that for the rock/ball charge to give the total. 
 



����������������
����������������
����������������
����������������
����������������

Charge Slurry����
   

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Charge Slurry����
 

 
   (a) Low flowrate  (b) Medium flowrate 
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   (c) High flowrate  (d) Very high flowrate 

 
Figure 6 – Schematic of the Progressive Filling of Voids in the Charge 

 
Cylindrical or conical end sections - a mill with conical ends will hold additional media and slurry, 
which will result in a higher power draw than a cylindrical mill with the same dimensions as the 
cylindrical section of the conical-ended mill.  Equation 1 must therefore be modified so that the 
power associated with the charge in the cone ends can be predicted.  The resultant equation is 
given below: 
 

Pnet-cone = ρc  ⌡⌠
0

Li
    ⌡⌠

ri

rc
   ⌡⌠

θT

θS
     (Vr (rg cosθ + Vr2)) dθ dr dLc    (2) 

where Li = length of the cone section 
 rc = radius of the cone at the trunnion 
 
Lifter type - different lifter profiles/heights will change the amount of lift given to the charge in direct 
contact with the lifters.  However, experiments with a glass-ended mill have shown that for the bulk 
of the charge that is not in direct contact with the lifters, differences in the amount of lift due to 
changes in lifter design are difficult to detect.  Figure 7 shows a schematic of three designs that 
were tested in a 300mm laboratory mill (Morrell, 1993).  Figure 8 shows how the lift, as measured 
by the angular displacement of the shoulder of the bulk of the charge, varied between lifter types 
as the speed was changed.  Apart from at very high speeds the results as shown in Figure 9 
indicated little difference.  At high speed, however, there was a significant difference, the higher 
profile and more angular lifters (A and B) being found to fully centrifuge at a lower speed.  This is 
supported by experience with variable speed industrial mills where it has been found that to 



operate at higher speeds the lifter face angle has to be reduced.  Further evidence of this trend 
comes from high-speed mills in South Africa, which typically run with grid liners that have a very 
low profile. 
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Figure 8 - Schematic of Lifters used in laboratory Tests 
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Figure 9 – Trends in Shoulder Angle as Speed is Varied (lifter types refer to Figure 8) 
 

    From a power modelling viewpoint the effect of lifters therefore need only be taken into account 
for the outermost layers of the charge. To do so with the conceptual view of the charge as shown 
in Figure 5 is relatively easy.  The charge needs only to be divided into two contiguous crescent 



shapes each with its own relationship between shoulder/toe position and mill filling and speed.  
This structure is similar to that proposed by Moys (1990). 
 
Mechanical/Electrical losses – industrial mill power is usually measured on the input side of the 
motor, whereas many pilot and laboratory scale mills are fitted with torque gauges, usually on the 
final drive shaft.  The torque is then converted into power using the product of the torque and 
rotational rate of the shaft.  Power in this case would not include any motor or reducer (gearbox) 
losses.  To predict motor input power, therefore, and hence be in a position to compare the 
prediction with measured power from an industrial mill requires the addition of a term to account for 
electrical and mechanical losses.  These losses are proportionately higher in smaller mills (in pilot-
scale mills they can account for up to 20% of the motor input power).  In large diameter mills this 
proportion is much smaller (probably of the order of 6-8%).  These losses are also a function of the 
type of drive train, the type of bearings and the general mechanical state of the mill.  The problem 
from a modelling viewpoint is that there are no published data for industrial-scale mills relating to 
accurate measurements of the motor input power and that delivered to the shell.  The nearest to it 
are measurements of the so-called no-load power which is drawn when the mill rotates when 
empty.  Morrell (1996) used such data to estimate what the mechanical and electrical losses were 
with respect to changes in mill size.   
 
    With all of the preceding factors correctly incorporated into a model it should be able to 
accurately predict mill power draw under most of the circumstances found in practice.  Such 
appears to be the case from the plot given in Figure 10.  This is a comparison of the predictions of 
the model with over 125 data sets.  These cover ball, AG and SAG mills ranging in diameter from 2 
ft to 40 ft and power draws from 6 kW to almost 20000 kW.  The standard error associated with the 
predictions as 5% giving a precision of about +/- 10% at the 95% confidence level. 
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Figure 10 – Observed vs Predicted Power Draw Using Morrell’s Power Model 
 
CONCLUSIONS 
 
    Using an appropriate conceptual view of the rotating charge inside tumbling mills and 
incorporating a description of the charge dynamics which relates the shape and motion of the 



charge to its composition and the speed of the shell it is possible to generate a model of the power 
draw which has a precision of +/- 10% at the 95% confidence level. 
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