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The slurry level in AG/SAG and ball mills has an influence on their power draw, which in 
some instances can be profound.  This is particularly the case with so-called slurry pooling in 
AG/SAG mills which can result in significant lowering of power draw.  From a predictive 
viewpoint there are currently no published models that explicitly describe the influence of 
slurry level on power draw and the relationship between slurry level, slurry flow and pulp lifter 
design.  Citic SMCC Process Technology Pty Ltd has developed such a model and in this paper 
its structure is described.  Examples are given of both AG/SAG and ball mills of how the model 
responds to changes in slurry level.  These examples are used to explain the observed 
phenomena of slurry pooling and the decrease in power draw observed in ball mills after start-
up when feed is first introduced into the mill. 
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1. Introduction 
 
If one looks back over the last 70 years or so there is a fairly common theme to most of 
tumbling mill power draw models (Bond, 1962, Hogg and Fuerstenau, 1972, Arbiter and 
Harris, 1982, Austin, 1990).  This is that the models used the charge shape shown in Figure 1 
in which it was assumed that all particles moved with same rotational rate and that the slurry 
phase was not explicitly considered.  There also appears to have been the view that different 
models were required for ball mills and AG/SAG mills.  This view was perhaps driven by the 
fact that the early models were developed at a time when AG/SAG mills were almost non-
existent and hence these models simply considered the ball charge only, which, if these models 
were to be applied to ball mills only is not an unreasonable assumption.  Morrell (1996a) found 
that in fact only one model is required to describe all tumbling mills, whether they are rod 
mills, ball mills or AG/SAG mills.  In its original form Morrell’s model used a different media 
charge shape to that in Figure 1 (Morrell, 1992) and was configured to consider the cases 
where slurry was contained within the grinding charge as in a typical grate discharge AG/SAG 
mill (Figure 2a) or where it additionally formed a large slurry pool as occurs in all overflow 
ball mills (Figure 2b)(Morrell, 1993, 1996a).  However, from experience gained with single 
stage AG/SAG mills it became clear that even grate discharge mills can accumulate slurry at 
the toe of the charge and this can considerably affect power draw depending on the extent of 
the slurry pool (Morrell, 1989, Morrell and Kojovic, 1996).  Hence it can be concluded that 
the extent of the slurry phase can have a significant impact on power draw and therefore should 
be explicitly described if a model is to be as accurate as possible.  This paper describes how 
Citic SMCC Process Technology’s (Citic SMCC) power model, which has been developed 
from Morrell’s earlier published work, incorporates the slurry phase. 
 

 
Figure 1 – “Classical” View of the Grinding Charge in Tumbling Mills 
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 Figure 2a:  Simplified Charge  Figure 2b:  Simplified Charge 
 Shape for Grate Mills (no slurry pool) Shape for Overflow Mills 
 
2. Model Structure 
 
2.1      General 
 
As per Morrell’s original model structure, the grinding media part of the charge (rocks and/or 
ball) is configured as per Figure 3. When a mill is in operation the slurry portion of the charge 
occupies the grinding media interstices.  However, it is not uniformly dispersed but fills the 
interstices from the shoulder down towards the toe of the grinding media charge (Latchireddi 
and Morrell, 2003).  This it does in response to changes in the slurry flowrate.  The toe of the 
slurry portion of the charge is therefore not necessarily coincident with that of the grinding 
media.  This is illustrated schematically in Figure 4, which shows the movement of the slurry 
toe as flowrate increases.  If the flowrate is high enough a slurry pool forms (Figure 4d) in 
which case the slurry toe effectively extends beyond the grinding media toe.  This causes the 
power draw to fall as the slurry toe effectively aids in the rotation of the mill.  In overflow ball 
mills this slurry toe extend up to at least the point where it can overflow out of the discharge 
trunnion.  As flow requires a gradient, the slurry toe position in an overflow ball mill will 
actually be higher than the lowest point of the discharge trunnion and as flow increases the 
slurry toe will become progressively higher.  This situation occurs in all overflow discharge 
ball mills and gives rise to the lower power draw which is usually seen in overflow ball mills 
compared to similar-sized grate discharge units and also gives rise to the progressive decrease 
in power as feedrate increases.  This decrease in power draw is typically not great, other than 
in extreme cases.  An example of this phenomenon is seen in Figure 5.  The figure shows on-
line data from an operating plant collected over a relatively long period.  Scatter in the data is 
clear and is typical of all real operating data.  However, the trend is clear in that as ball mill 
feedrate increases the power draw falls.  As can be seen the average power draw is about 12.5 
MW and occurs at a feedrate (new feed plus recycle) of about 6000 t/hr.  Over a wide range of 
feedrates about the mean value of 6000 tph the power draw varies by only  +/- 5%.  Of note 
also in Figure 5 is the power draw at zero feedrate, which has the highest value of all.  This 
phenomenon is also common and is explainable by the fact that the slurry pool is at its lowest 
point and at its lowest density).  Its influence depressing power draw is therefore at its lowest.  
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Figure 3 – Schematic of Simplified Charge Shape 
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  (c) High flowrate       (d) Very high flowrate 
 

Figure 4 – Schematic of Observed Trends in Slurry Hold-up 
 



 
Figure 5 – Production Data from an Operating Ball Mill 

 
2.2.      Equations 
 
The approach adopted in the Citic SMCC model to handle the slurry phase is to predict its 
power draw separately to the grinding media phase (balls/rocks), then add the powers of each 
phase together to obtain the total power draw. Using an energy balance approach, where power 
is taken to be the rate at which potential and kinetic energy is imparted to the charge, equation 
1 was therefore developed for the cylindrical section of the mill.  From this equation it can be 
seen that the power associated with the rock/ball charge is calculated separately from the 
slurry, the total power being the sum of both.  Some mills have conical end-sections and, as 
they also draw power, have to be included if accurate predictions are to be obtained.  This is 
easily done by using the same approach that Morrell adopted in his original model (1996a). 
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Where, 
Pcylinder = power drawn by the charge (net)  
K = lumped parameter (constant)  
L = length of cylindrical section of the mill inside liners  
P = power delivered to the charge (net power) 
r = radial position  
ri = radial position of charge inner surface  
rm = radius of mill inside liners  
Vr = tangential velocity of a particle at radial distance r  
θs = angular displacement of shoulder position at the mill shell  



θtm = angular displacement of the grinding media (rocks and balls) toe position at the 
mill shell  

θtp = angular displacement of the pulp (slurry) toe position at the mill shell (see Figure 
4b); for overflow ball mills θtp = θto (see Figure 2b) 

ρm = density of rock/ball charge (excluding pulp) 
ρp = density of pulp phase  
 
The density of the pulp phase (ρp) is assumed to be the same as the discharge density of the 
slurry.  The density of the rock/ball charge (ρm) is estimated using the following equation: 
 
ρm = ((Jt-Jb)*ρo + Jb*ρb)/ε        (2) 
 
Where, 
Jt = total fractional static volumetric filling (including voids) of balls and rocks 
Jb = fractional static volumetric filling (including voids) of balls 
ρo = density of rock in the mill 
ρb = density of steel media in the mill (usually taken as 7.8 tonnes/cu.m) 
ε = dynamic void fraction in the ball/rock media 
 
The parameter ε represents the fractional voidage in the charge in the mill whilst it is motion 
and differs from the static fractional voidage which is normally assumed to be constant at 0.4.  
Experiments by Latchireddi (2002) showed that the fractional voidage of the charge when it 
is being tumbled In a mill is not constant and can vary over the range 0.45-0.6, the magnitude 
being dictated by the speed of rotation of the mill and the grinding media load volume.  Higher 
speeds were found to increase the voidage whilst the grinding media load had the opposite 
effect.  The following equation was fitted to his data to predict ε: 
 
ε = 0.45*Jt-0.15*φ0.087        (3) 
 
Where, 
φ = fraction of critical speed 
Jt = total fractional static volumetric filling (including voids) of balls and rocks 
 
The fit of equation 3 to Latchireddi’s data is shown in Figure 6. 
 
Equation 1 describes the power draw by the charge (net power) and does not explicitly include 
electrical losses across the motor as well as the power required to overcome friction in the 
bearings and losses in gearboxes/reducers as well as in the gear/pinion coupling, where the 
mill has a gear-and-pinion drive. Note that this definition of net power is not the same as the 
“power at pinion”.  The power at pinion cannot normally be measured other than in some pilot 
mills and is a value which is estimated from assumptions about the energy losses of various 
components in the drive train.  Theoretically it is the power delivered to the pinion shaft in 
gear-and-pinion drives.  As such it is meant to account for electrical motor and 
gearbox/reducer energy losses only but does not include the energy losses associated with the 
pinion gear/ring gear coupling nor bearings.   
 



 
Figure 6 – Observed vs predicted values of the dynamic void fraction 

 
 
In practice the only power draw that is usually measured in full scale plants is the metered or 
gross power, ie motor input power. The difference between motor input and net power draw in 
a mill is due to losses associated with various electrical and mechanical components.  The main 
losses occur in the motor, gearing and bearings.  None of these remains constant over the mill's 
full operating range.  Some, however, may have a fixed component - for example, losses in the 
bearings due to friction will be dictated by the weight of the mill when empty (a fixed 
component, though even this will vary as liners and lifters wear) and the weight of the mill 
charge (a variable component).  In most, if not all, full-scale operating plants the only data that 
will be measured is gross power and/or current.  In rare cases no-load power (the gross power 
drawn by the mill when running empty) will be known from commissioning or maintenance 
records.  Alternatively, if the mill has been emptied for relining, the no-load power is 
sometimes recorded at start-up. Such data indicate the magnitude of some of the power-loss 
components. Given the need to properly validate the model through comparison of measured 
and predicted values, the power model must also predict motor input power. Therefore to do 
so the Citic SMCC model is configured as follows: 
 
Motor input power = No-load power + Net power     (4) 
 
Where net power is given by equation 1. A further equation is therefore required which 
predicts no-load power.  The semi-empirical no-load power equation form proposed by 
Morrell (1996a, Napier-Munn et al, (1996)) is used for this purpose (Equation 5), though it 
has been modified slightly on the basis of additional data and was developed with the aid of 
no-load power measurements from a range of plants including pilot mills and mills up to 40ft 
in diameter. 
 
No-load Power (kW) = κ (D2.5 φ (0.667Ld+L))0.82 (5) 

where κ = 2.13 for gear and pinion drives and 1.28 for gearless drives 
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  D  =  mill diameter 
  L  = length of cylindrical section 
  Ld = length of cone end 
  φ = fraction of critical speed 
 
Clearly to solve the integral in equation 1 it is necessary to have relationships which predict 
values for parameters such as θs,θtm, θtp,Vr, and ri. With the exception of θtp all of these 
relationships are provided by Morrell (1993, 1996a) and Napier-Munn et al (1996).  The 
equations relating these parameters to operating conditions and how they vary with radial 
position (r) were obtained by measurements made from images captured from a rotating glass-
ended mill which was operated at a range of speeds and with a range of grinding media loads.  
This leaves the lumped parameter (K), which needs to be estimated by fitting it to data from 
operating mills. Such data were sourced from Citic SMCC’s data base and represent 146 ball, 
AG and SAG mills. In all cases the data sets are operating mills where the ball and rock levels 
were measured as well as the associated operational power draws (motor input powers).  The 
lumped parameter (K) accounts for energy losses due to sound, heat generated within the 
charge due to sliding friction, rock breakage due to attrition/abrasion, rotation of the grinding 
media plus some of the variable losses in the mechanical/electrical drive train not accounted 
for by the No-load equation.  
 
In the vast majority of situations mills are operated in a “normal” regime, eg the AG/SAG 
mill does not have a slurry pool or the ball mill slurry flowrate is the result of a recycle load 
which is not excessive.  In such cases good predictive results can be obtained by setting  θtp  
to the same value as  θtm for AG/SAG mills (this is equivalent to assuming all the interstices 
are just filled with slurry), and for overflow ball mills a fixed value of θto can be used as 
proposed by Morrell (1993). When this approach is adopted and only mills which are 
operating in a “normal” regime are considered, the results given in Figure 7 are obtained.    
Mills range in size from pilot units to the largest mills currently in operation.  The precision 
of the model as measured by the standard deviation of the relative error is 4%. 
 



 
Figure 7 – Observed vs Predicted On-line Motor Input Power Draw of  AG, SAG and Ball 

Mills 
 
3. Predicting the Position of the Slurry Phase (θtp) 
 
3.1 Influence of the Slurry Phase 
 
As mentioned in the previous section, providing the mill is operating in a reasonably normal 
manner, simple approximations of the extent and position of the slurry phase lead to good 
predictions of the power draw.  However, there are situations where, for various reasons, mills 
operate under unusual conditions and as a result their power response is atypical. Figure 8 is a 
picture of such a (SAG) mill in which a large slurry pool was forming during operation.   Citic 
SMCC has 9 SAG mill data sets from mills which were found to be operating with varying 
degrees of slurry pooling.  If it is assumed that the mills were operating normally, ie without 
slurry pooling and θtp  =  θtm, then the predicted power draws as compared to the measured 
values are as shown also in Figure 9.  As can be seen the measured powers are lower than the 
predicted values, some values being considerably different (up to 25% lower).  However, if the 
measured slurry pool volumes are used to estimate the true value of θtp and the power model 
is re-run, then the results shown in Figure 10 are obtained.  As can be seen good agreement 
between the model and the measured power draw is obtained. 
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Figure 8 – View of the Inside of a SAG Mill with a Slurry Pool Problem 

 

 
Figure 9 – Measured vs Predicted Power Draws of Mills SAG Mills with Slurry Pools – 

Assumption in model (equation 1) is that there is no slurry pooling and θtp  =  θtm 
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Figure 10 – Measured vs Predicted Power Draws of Mills SAG Mills with Slurry Pools – 

Assumption in model (equation 1) is that there is slurry pooling and θtp  estimated on basis of 
the extent of slurry pool 

 
 
3.2 Predicting θtp in Grate Discharge Mills 
 
The challenge in modelling power draw, apart from accurately describing the slurry phase 
influence on power draw where the slurry volume is known, is to predict the slurry phase 
volume in the first instance from information on the design of the mill and the slurry flowrate 
out of the mill.  A relationship between slurry flow and slurry volume (so-called hold up) is 
therefore required.  Citic SMCC’s slurry flow model for AG/SAG mills (grate discharge mills) 
was constructed using the approach originally adopted by Morrell and Stephenson (1996) who 
related the volume of slurry held-up in the mill to its rate of flow out of the grates.  Morrell and 
Stephenson incorporated the effects of grate design, mill speed and charge volume.  However, 
the range of grate designs they used for their experimental programme was very limited and, 
more importantly, did not take into account the effect of pulp lifters.  Latchireddi and Morrell 
(2003a, 2003b) conducted a detailed laboratory and pilot study of the influence of grate design 
and pulp lifters on the slurry flow – hold-up relationship and their results were then used to 
revise Morrell’s original equation and incorporate the influence of pulp lifter depth (λ).  The 
result was the following general equation: 
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Where,   
Js =  the net fractional slurry hold-up inside the mill  
A =   fractional open area  
Jt =  fractional grinding media volume 
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φ =   fraction of critical speed  
Q =   slurry discharge flowrate  
γ =    mean relative radial position of the grate holes 
η =   coefficient of resistance which is expected to be a function of viscosity 
n1-n6 =   model parameters 
 
The value of γ is a weighted radial position, which is expressed as a fraction of the mill radius 
and is calculated using the formula: 
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Where,  
ai   =  open area of all holes at a radial position ri  
rm   =  radius of mill inside the liners 
 
The parameter values n1-n6 and η were found to be functions of pulp lifter size and were all 
modelled using the following general equation (Morrell and  Latchireddi ; 2000): 
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Where, 
ng = parameter values for grate-only condition 
ki, kj = constants  
λ = depth of the pulp lifter expressed as a fraction of mill diameter 
 
The parameters in the above equations were fitted to over 760 laboratory and pilot mill data 
sets and 19 full scale mill data sets.  The fit of the equations to the full-scale mill data sets are 
shown in Figure 11.   
 



 
Figure 11 –  Predicted Slurry Hold-up vs Observed in 19 Full Scale AG and SAG Mills 

 
Once the slurry hold-up has been estimated using equations 6-8 the model then determines how 
much of the interstices (voidage) in the grinding media part of the charge will be occupied by 
this slurry when the mill is in operation.  Using the concept that the voidage in the grinding 
media is progressively filled from the shoulder down to the toe, the slurry toe position, θtp , 
can then be determined and used to predict the power draw using equation 1.  The extent to 
which the combination of the slurry hold-up and power draw models are able to reproduce 
measured behaviour is illustrated in Figure 12 using data from an single stage AG mill in which 
the flow rates varied yet the media charge volume remained approximately the same.  The mill 
was operating with a slurry pool and therefore as flowrate increased the pool volume increased 
and hence power draw decreased.  As can be seen the predicted power draw behaviour matches 
the measured response quite well.   
 
As the mill was operating under slurry pool conditions, increasing flowrate decreased power 
draw.  If the mill did not have a slurry pool in the first instance this response may not have 
occurred.  Figure 13 shows the predicted full range of power response to changes in flowrate.  
As can be seen it is parabolic in nature with maximum power draw being drawn when the 
media interstices are about 80% full of slurry.  The implications of this response is that if the 
mill is operating to the left of the maximum, increasing flow rate will cause the power draw to 
increase.  However if the mill is operating to the right of the maximum, exactly the opposite 
response will result. 
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Figure 12 – Measured vs Predicted Power Response to Changes in Flowrate Under Slurry 

Pool Conditions 
 

 
Figure 13 – Predicted Power Response to Changes in Slurry Flowrate 
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3.3 Predicting θtp in Overflow Discharge Mills 
 
An overflow mill can be considered as a special case of a grate discharge mill in which the 
grates have no holes (or all of the holes are blocked) and slurry builds up until it overflows out 
of the discharge trunnion.  At this point θtp is referred to as the slurry overflow angle θto.  From 
a power draw modelling viewpoint the position of the slurry pool, as measured by the toe angle 
θto, can be calculated theoretically from a knowledge of the trunnion diameter, mill diameter 
and slurry level within the mill. 
 
The slurry level will vary with flow of slurry into and out of the mill, a higher level resulting 
from a higher flow.  The slurry level can be estimated by making the simplifying assumption 
that the discharge trunnion behaves like a rectangular section, broad crested weir (Figure 14). 
 
By applying the Bernoulli equation to such a weir of width b, then the velocity (u) at the end 
of the weir can be obtained by solving: 

 h = λ + 
u2

2g  (9) 

The volumetric discharge rate (Q) is therefore given by: 
 Q = bλ(2g)0.5 (h-λ)0.5 (10) 
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Figure 14:  Schematic of an Overflow Discharge 

 
For maximum discharge 
 

 
dQ
dλ   = 0 at constant h 



 
By differentiating equation 10 and setting dQ/dλ to zero gives: 
 λ = 0.67h 
By substituting for λ in equation 10 therefore gives: 
Qmax = bg0.5 (0.67h)1.5 (11) 
To maintain the same cross-sectional area and maximum vertical height as the mill discharge 
trunnion, b must be set to πrt/2 
Hence Qmax = 0.5 πrt g0.5 (0.67h)1.5 (12) 

or h  =  0.67 





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2Q

πrt g0.5
2/3

  (13) 

With reference to Figure 15, θto can be calculated as follows: 

 θto = arc sin 






rt - h

rm
  + π (14) 

By substituting equation 13 into equation 14, θto can be found. 
 
These equations are theoretical and relate to inviscid flow.  In practice slurries are far from 
inviscid in behaviour.  Empirical corrections to equation 13 are necessary to reflect slurry 
behaviour.  In practice this will result in the distance, h, being higher for a given slurry flow 
than equation 13 suggests.  To account for this a multiplier is applied to equation 13.  On the 
basis of operating data collected so far, this multiplier is of the order of 2.   
 
The validity of these equations is illustrated using the data from Figure 5 which is reproduced 
in Figure 16 with Citic SMCC’s model predictions overlaid.  Good agreement is seen. 
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Figure 15:  Estimation of θto 

 



 
 

Figure 16 – Measured vs Predicted Ball Mill Power Response to Changes in Flowrate 
 
4. Conclusions 
 
The behaviour of the slurry phase in tumbling mills influences their power draw.  Whereas in 
some instances this influence is relatively minor, in other cases it can be profound.  For a power 
model to be truly effective, therefore, this response must be adequately described.  Citic 
SMCC’s power does so by describing the power draw of the slurry phase separately to the 
grinding media, then adds the values to give the overall power.  This is in contrast to other 
published models which do not consider the slurry phase at all. 
 
The volume occupied by the slurry phase is dictated by the design of the discharge system, the 
volume of grinding media and the slurry flowrate.  The Citic SMCC model utilises equations 
which initially predict the volume of the slurry phase then uses this information to predict its 
position and motion in relation to the grinding media phase. 
 
The model has been tested using a large volume of operational data and has been demonstrated 
to provide very accurate results. 
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